首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

2.
混合阴阳离子表面活性剂体系的物理化学性质   总被引:4,自引:0,他引:4  
测定并比较了TX-100(C_8ΦE_(9.8))及TX-100的硫酸盐(_8CΦE_(9.8)S)分别与阳离子表面活性剂(C_nPy, n=10, 12, 14; C_mNM_3, m=16, 18)混合后, 混合表面活性剂的表面活性、水溶液的稳定性、起泡能力和泡沫稳定性等物理化学性质。  相似文献   

3.
Metal complexes were prepared by the reaction of Cu(II) chloride with sodium salt of random copolymers of 2-acrylamido-2-methylpropane sulphonic acid, AMPS, and isodecyl methacrylate, i-DMA. Composition was varied in the feed to obtain copolymers and their corresponding metal chelates with different content of i-DMA hydrophobic monomer. The copolymers and their metal chelates were characterized by Fourier transformed IR spectroscopy (FTIR) and scanning electron microscopy (SEM) as well as energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction studies revealed that the polymers and their chelates were amorphous. Also, the stabilities of the copolymers and their metal chelates were investigated using thermal methods such as TGA and DSC analysis. Lower thermal stability was found for the polymer–metal complexes compared to that of the copolymers.

Fluorescence spectroscopy was used to further confirm the copolymers and their Cu(II) metal complexes self-aggregate in water. Critical micellar concentrations become lower by metal complexation. A synergistic effect in self-assembly behaviour in water solutions of Cu(II) polycomplexes is attributed to the interplay between hydrophilic–hydrophobic interactions and electrostatic forces with Cu2+ ions. Physical crosslinking of polymeric micelles obtained by metal complexation led to more stable micelles. Sodium salt copolymers led to secondary aggregation while ionic crosslinking provided lonely micelles distributed through the substrate as seen by SEM. These results point to a mechanism in which cation-assisted-polymer-modified water structure plays a central role in the phase separation behaviour.  相似文献   


4.
Aggregation behavior including dilute solution property and surface‐activity of the amphiphilic random copolymer composed of 2‐(acrylamido)‐2‐methylpropanesulfonic acid and tris(trimethylsiloxy)silylpropylmethacrylate (AMPS/TRIS copolymer) in aqueous solution were studied by static light scattering (SLS), dynamic light scattering (DLS), surface tension measurement, and transmission electron microscopy (TEM). The surface tension measurement made it clear that AMPS/TRIS copolymer exhibited weaker surface‐activity than a typical low‐molecular weight surfactant sodium dodecyl sulfate in water, that is, there were no plateau of surface tension γ versus concentration and no critical micelle concentration (CMC) in the whole concentration studied. SLS and DLS analyses, and TEM revealed that AMPS/TRIS copolymer self‐associated into imperfect core‐shell micelles having hydrophobic TRIS core surrounded by hydrophilic AMPS shell in water. AMPS shell was considered as a hard shell due to the stiffness of AMPS chain in water. TRIS chain could not densely aggregate in water due to the large steric hindrance between bulky trimethylsiloxy groups despite its hydrophobic nature, thereby providing TRIS core with less‐dense structure. The balance between the spreading force of stiff AMPS chain and the cohesion force of bulky TRIS chain provides the driving force for forming the unique micelle having less‐dense TRIS core and hard AMPS shell. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

5.
This study reports the synthesis of poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate) (MPEG‐b‐PGMA) diblock, and poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate)‐block‐poly(methyl methacrylate) (MPEG‐b‐PGMA‐b‐PMMA) triblock copolymers via atom transfer radical polymerization and their self‐assembly behaviors in aqueous media by using acetone as cosolvent. These block copolymers formed near monodisperse core–shell micelles having cross‐linkable cores. Two types of cross‐linked micelles, namely spherical MPEG‐b‐PGMA core cross‐linked (CCL) micelles and MPEG‐b‐PGMA‐b‐PMMA interlayer cross‐linked (ILCL) micelles, were also successfully prepared from these block copolymers by using various bifunctional cross‐linkers such as hexamethylenediamine (HMDA), ethylenediamine (EDA), and 2‐aminoethanethiol (AET). Cross‐linking was successfully carried out via ring‐opening reactions of epoxy residues of hydrophobic‐cores with primary amine or thiol groups of bifunctional cross‐linkers. Finally, these cross‐linked micelles were successfully used as nanoreactors in the synthesis of gold nanoparticles (AuNPs) in aqueous media. Both CCL and ILCL micelles were found to be good stabilizers for AuNPs in aqueous media. Both CCL‐ and ILCL‐stabilized AuNP dispersions were stable for a long time without any size changes and flocculation at room temperature. These cross‐linked stabilized AuNPs exhibited good catalytic activities in the reduction of p‐nitrophenol. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 514–526.  相似文献   

6.
Amphiphilic copolymers of AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid) and hydrophobic monomers with various chemical structures were synthesized, characterized and used as novel electrokinetic chromatography polymeric pseudo-stationary phases, showing significant chemical selectivity differences from that of the conventional monomeric pseudo-stationary phase, sodium lauryl sulphate. Copolymers of AMPS and methacrylates with different pendant chain lengths (C8, C12 and C18) were investigated and no significant difference in chemical selectivity was observed among them. However, the spacer bonding chemistry was shown to contribute to significant chemical selectivity difference, e.g. poly(AMPS-lauryl methacrylate) showed different chemical selectivity from poly(AMPS-lauryl methacrylamide). Linear solvation energy relationship analysis of 20 solutes by eight different polymeric pseudo-stationary phases was employed to investigate the solute molecule structural contributions to the retention. Hydrogen-bonding properties (described by system constants b and a) of poly(AMPS-alkyl methacrylamide) were found stronger than those of poly(AMPS-alkyl methacrylate).  相似文献   

7.
The interactions of temperature-responsive copolymers of sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) and N-isopropylacrylamide (NIPAM) with a cationic surfactant, dodecyltrimethylammonium chloride (DTAC), have been studied. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol%. The surface activity was higher for the polymers with lower AMPS content. It was found that DTAC undergoes association with the polymer chain, forming mixed polymer-surfactant micelles. The values of cac for the polymers were found in fluorescence studies using pyrene as the fluorescent probe. They were in the range 0.9-3.6x10(-3) M and were lower for polymers with higher AMPS content. An increase in DTAC concentration up to about its cmc results in a decrease of the LCST (lower critical solution temperature) of the copolymers, while further increase above the cmc results in an increase of the LCST. The minimum value of LCST in the presence of the surfactant is lower than the LCST of NIPAM homopolymer.  相似文献   

8.
The behavior of block copolymers at various interfaces is studied by transmission electron microscopy and neutron reflection. A thin film of a symmetric diblock copolymer of styrene and methyl methacrylate forms layer structures when in contact with air and a random copolymer of styrene and acrylonitrile containing 35 wt% acrylonitrile. When the random copolymer has an acrylonitrile content of 25 wt%, a competition between layer formation and diffusion of disordered micelles takes place. Driving force for these processes are different interfacial tensions and a changing miscibility behavior as a function of acrylonitrile contents of the random copolymers. The ordering behavior of a symmetric diblock copolymer of deuterated styrene and isoprene in contact with poly(3,5-dimethyl phenylene ether) is studied by neutron reflection. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene with cylindrical PS microdomains shows an interfacial phase transition to lamellae near to the interface with different polymers. The morphological studies are in agreement with adhesion data obtained by peel tests on different bilayer specimens.  相似文献   

9.
林翠英  赵剑曦 《物理化学学报》2006,22(12):1501-1505
近红外(NIR)光谱技术可用于表征氯仿体系中反胶团增溶水的能力. 对于C12-s-C12•2Br (s=2, 3, 4, 5, 6, 8)系列, 不论体系是否含有NaBr电解质, 由于具有较短联接链的表面活性剂易形成较大的反胶团, 其增溶水的能力随着联接链长度增加而降低. 与未含NaBr电解质的体系相比, 当体系中存在NaBr电解质时所形成的反胶团增溶水能力降低.  相似文献   

10.
The influence of spacer group on the geometrical shape of micelles formed by quaternary-bis dimeric (Gemini) surfactants C(12)H(25)N(CH(3))(2)(CH(2))(s)N(CH(3))(2)C(12)H(25) (12-s-12) has been investigated with small-angle neutron scattering (SANS). Dimeric surfactants with a short spacer unit (12-3-12 and 12-4-12) are observed to form elongated general ellipsoidal micelles with half axes a < b < c, whereas SANS data demonstrate that 12-s-12 surfactants with 6 ≤ s ≤ 12 form rather small spheroidal micelles rather than strictly spherical micelles. By means of comparing our present SANS results with previously determined growth rates using time-resolved fluorescence quenching, we are able to conclude that micelles formed by 12-6-12, 12-8-12, 12-10-12, and 12-12-12 are shaped as oblate rather than prolate spheroids. As a result, our present investigation suggests a never before reported structural behavior of Gemini surfactant micelles, according to which micelles transform from elongated ellipsoids to nonelongated oblate spheroids as the length of the spacer group is increased. The aggregation number of oblate micelles is observed to monotonously decrease with an increasing length of the surfactant spacer group, mainly as a result of a decreasing minor half axis (a), whereas the major half axis (b) is rather constant with respect to s. We argue that geometrically heterogeneous elongated micelles are formed by dimeric surfactants with a short spacer group mainly as a result of the surface charges becoming less uniformly distributed over the micelle interface. As the length of the spacer group increases, the distance between intramolecular charges become approximately equal to the average distance between charges on the micelle interface, and as a result, rather small oblate spheroidal micelles with a more uniform distribution of surface charges are formed by dimeric 12-s-12 surfactants with 6 ≤ s ≤ 12.  相似文献   

11.
The 2-acrylamido -2-methylpropane sulfonic acid (AMPS) was used as a reactive comonomer for the methyl methacrylate (MMA), n-butyl acrylate (BA) and 2-hydroxyethyl acrylate (HEA) emulsifier-free emulsion copolymerization system to obtain latices of stable and high-solid content (50 wt%).The polymerization and storage process is very stable, and the emulsion could store at room temperature for more than six months with the addition of AMPS. Properties of the latices, such as stability, flow behavior, particles diameter and morphology were studied. In addition, physical properties of the obtained copolymers, such as water resistance, glass transition temperature (Tg) were also investigated. The final size of the latex particles is 200~300 nm in diameter. Compared with the copolymers that were prepared by surfactant emulsion polymerization water resistance is greatly improved.  相似文献   

12.
We explored the effects of addition of the nonionic surfactant Triton X‐100 on the stability of aggregates of poly(ethylene glycol‐bl‐propylene sulfide) di‐ and triblock copolymers. Fluorescence spectra of pyrene, used as a probe molecule, elucidated the various stages of transformation from pure copolymeric micelles to surfactant‐rich micelles. Turbidity measurements yielded insight into the mechanism of the interaction, the hydrophobicity of the copolymer driving the process. Triton X‐100 tends to strongly interact with highly hydrophobic copolymers by inserting into the core of the micellar aggregates. On the other hand, Triton X‐100 tends to interact with the corona of micelles formed by less hydrophobic copolymers which, for this reason, are more stable upon addition of this destabilizing agent. Kinetic data give evidence that only monomers, not micelles of surfactant, interact with the copolymer micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2477–2487, 2008  相似文献   

13.
以LiOH与5(2甲基丙烯酰乙氧基甲基)8羟基喹啉反应合成8羟基喹啉锂(Liq)配合物单体,并与甲基丙烯酸甲酯共聚合成含有高分化的8羟基喹啉锂.1HNMR、TGA、元素分析确定了单体的组成为Li(C9H5NO)CH2OCH2CH2OOCC(CH3)CH2·H2O.与聚甲基丙烯酸甲酯比较,共聚物热稳定性高.Liq含量<15wt%时共聚物能够溶于普通溶剂.紫外吸收、激发光谱、光致(PL)发光谱说明单体和共聚物的发光来自于Liq基团.单体和共聚物发蓝光.同时对共聚物的二甲基甲酰胺、二甲亚砜和四氯乙烷溶液制备的薄膜的光致发光光谱进行了比较,证明溶剂影响Liq基团上共轭电子的离域程度,对发光光谱有调节作用.  相似文献   

14.
The association of cetyltrimethylammonium bromide, CTAB, with a series of P(MMAx-co-SSNa) random copolymers of sodium styrene sulfonate (SSNa) with methyl methacrylate (MMA) was explored in aqueous solution as a function of the MMA molar content, x, of the copolymers. The polyelectrolyte/surfactant complexation in aqueous solution was verified through pyrene fluorescence probing. In addition, turbidimetry studies in dilute or more concentrated aqueous solutions elucidated the phase separation behavior of the P(MMAx-co-SSNa)/CTAB systems as a function of the copolymer composition x and the surfactant to polyelectrolyte mixing charge ratio. It is found that practically phase separation is completely suppressed within the studied mixing range when the MMA content of the copolymers is ~30-40 mol%. For lower MMA contents the polyelectrolyte/surfactant complex separates out from water, while for higher x values the solubility limits of the copolymers in water are attained. For the intermediate MMA contents, viscoelastic systems are obtained in more concentrated polymer/surfactant solutions provided that the polyelectrolyte is fully complexed with the cationic surfactant ((1)H NMR results). Moreover, the (1)H NMR studies indicate that hybrid P(MMAx-co-SSNa)/CTAB wormlike micelles are formed in water under these conditions. Finally, it is shown that addition of salt prevents syneresis problems and facilitates the rheological investigation.  相似文献   

15.
Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus–Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic–anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4–0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate–EO interactions.  相似文献   

16.
Polyion complex (PIC) micelles have gained an increasing interest, mainly as promising nano-vehicles for the delivery of various hydrophilic charged (macro)molecules such as DNA or drugs to the body. The aim of the present study is to construct novel functional PIC micelles bearing cell targeting ligands on the surface and to evaluate the possibility of a hydrophobic drug encapsulation. Initially, a pair of functional oppositely charged peptide-based hybrid diblock copolymers were synthesized and characterized. The copolymers spontaneously co-assembled in water into nanosized PIC micelles comprising a core of a polyelectrolyte complex between poly(L-aspartic acid) and poly(L-lysine) and a biocompatible mixed shell of disaccharide-modified poly(ethylene glycol) and poly(2-hydroxyethyl methacrylate). Depending on the molar ratio between the oppositely charged groups, PIC micelles varying in surface charge were obtained and loaded with the natural hydrophobic drug curcumin. PIC micelles’ drug loading efficiency, in vitro drug release profiles and antioxidant activity were evaluated. The preliminary results indicate that PIC micelles can be successfully used as carriers of hydrophobic drugs, thus expanding their potential application in nanomedicine.  相似文献   

17.
The rheological behavior of the aqueous solutions of mixed sulfate gemini surfactant with no spacer group, referred to as d‐C12S, and dodecyltrimethylammonium bromide (C12TABr) at a total concentration of 100 mmol·L−1 but different molar ratios of C12TABr to d‐C12S (α1) was investigated using steady rate and frequency sweep measurements. The wormlike micelles were formed over a narrow α1 range of 0.20–0.27. The viscoelastic solutions exhibited Maxwell fluid behavior. At the optimum molar ratio of 0.25, the zero‐shear viscosity was as high as 600 Pa·s and the length of the mixed wormlike micelle was about 0.45–0.85 µm. The present result provides an example to construct long wormlike micelles by anionic gemini surfactant.  相似文献   

18.
19.
Copolymers of 2-acrylamido-2-methylpropanesulphonic acid (AMPS) and methyl methacrylate (MMA) were prepared. Thermal behaviour was studied by TG and DTG methods. Incorporation of more comonomer units, at various compositions, results in a copolymer more stable than the AMPS homopolymer. Decomposition of the copolymers involves the formation of anhydrides, the majority of which involve six-membered cyclic anhydride rings. Further heating results in the formation of a highly aromatic char at the higher temperatures. The apparent activation energies of decomposition of the homo- and copolymers were established.  相似文献   

20.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号