首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ammonolyses of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives [Ti(eta5-C5Me5)X3] (X = NMe2, Me, Cl) have been carried out in solution to give polynuclear nitrido complexes. Reaction of the tris(dimethylamido) derivative [Ti(eta5-C5Me5)(NMe2)3] with excess of ammonia at 80-100 degrees C gives the cubane complex [[Ti(eta5-C5Me5)]4(mu3-N)4] (1). Treatment of the trimethyl derivative [Ti(eta5-C5Me5)Me3] with NH3 at room temperature leads to the trinuclear imido-nitrido complex [[Ti(eta/5-CsMes)(mu-NH)]3(mu3-N)] (2) via the intermediate [[Ti(eta5-C5Me5)Me]2(mu-NH)2] (3). The analogous reaction of [Ti(eta5-C5Me5)Me3] with 2,4,6-trimethylaniline (ArNH2) gives the dinuclear imido complex [[Ti(eta5-C5Me5)Me])2(mu-NAr)2] (4) which reacts with ammonia to afford [[Ti(eta5-C5Me5)(NH2)]2(mu-NAr)2] (5). Complex 2 has been used, by treatments with the tris(dimethylamido) derivatives [Ti(eta5-C5H5-nRn)(NMe2)3], as precursor of the cubane nitrido systems [[Ti4(eta5-C5Me5)3(eta5-C5H5-nRn)](mu3-N)4] [R = Me n = 5 (1), R = H n = 0 (6), R = SiMe3 n = 1 (7), R = Me n = 1 (8)] via dimethylamine elimination. Reaction of [Ti(eta5-C5Me5)Cl3] or [Ti(eta5-C5Me5)(NMe2)Cl2] with excess of ammonia at room temperature gives the dinuclear complex [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) where an intramolecular hydrogen bonding and a nonlineal nitrido ligand bridge the "Ti(eta5-C5Me5)Cl(NH3)" and "Ti(eta5-C5Me5)Cl2" moieties. The molecular structures of [[Ti(eta5-C5Me5)Me]2 (mu-NAr)2] (4) and [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) have been determined by X-ray crystallographic studies. Density functional theory calculations also have been conducted on complex 9 to confirm the existence of an intramolecular N-H...Cl hydrogen bond and to evaluate different aspects of its molecular disposition.  相似文献   

2.
The 14 A octamethyloctahydrodibenzofluorene moiety has been incorporated into a sterically expanded constrained geometry catalyst, Me2Si(eta1-C29H36)(eta1-N-tBu)ZrCl2.OEt2 (1). The solid-state structure suggests that the activated olefin polymerization catalyst is quite spatially accessible, rationalizing its extraordinary reactivity toward alpha-olefins. 1/MAO (MAO = methylaluminoxane) can be more reactive toward alpha-olefins than toward ethylene and exhibit activities that are linearly and continuously proportional to 4-methyl-1-pentene or 1-octene concentration in their copolymerizations with ethylene.  相似文献   

3.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

4.
The mixed-ring beryllocene Be(C5Me5)(C5Me4H), that contains eta 5-C5Me5 and eta 1-C5Me4H rings, the latter bonded to the metal through the CH carbon atom (X-ray crystal structure) reacts at room temperature with CNXyl (Xyl = C6H3-2,6-Me2) to give an iminoacyl product, Be(eta 5-C5Me4H)[C(NXyl)C5Me5] derived from the inverted beryllocene structure Be (eta 5-C5Me4H)(eta 1-C5Me5).  相似文献   

5.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

6.
Cyclopentadienyl (Cp) ligands in moderately strained [1]- and [2]ferrocenophanes [Fe{(eta5-C5H4)2(ERx)y}: Fe{(eta5-C5H4)2SiMe2} (1), Fe{(eta5-C5H4)CH2}2 (10)] and highly strained [2]ruthenocenophanes [Ru{(eta5-C5H4)CR2}2 {R = H (15), Me (16)}] are susceptible to partial substitution by P donors and form mixed-hapticity metallocycles-[M(L2){(eta5-C5H4)(ERx)y(eta1-C5H4)}]: [Fe(dppe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (5), [Fe(dmpe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (6), [Fe(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (11), [Ru(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (17), [Ru(dmpe){(eta5-C5H4)(CMe2)2(eta1-C5H4)}] (18), and [Ru(PMe3)2{(eta5-C5H4)(CH2)2(eta1-C5H4)}] (19)-through haptotropic reduction of one eta5-, pi-bound Cp to eta1, sigma-coordination. These reactions are strain-controlled, as highly ring-tilted [2]ruthenocenophanes 15 and 16 [tilt angles (alpha) approximately 29-31 degrees ] react without irradiation to form thermodynamically stable products, while moderately strained [n]ferrocenophanes 1 and 10 (alpha approximately 19-22 degrees ) require photoactivation. The iron-containing photoproducts 5 and 11 are metastable and thermally retroconvert to their strained precursors and free phosphines at 70 degrees C. In contrast, the unprecedented ring-opening polymerization (ROP) of the essentially ring-strain-free adduct 6 to afford poly(ferrocenyldimethylsilane) [Fe(eta5-C5H4)2SiMe2]n (Mw approximately 5000 Da) was initiated by the thermal liberation of small amounts of P donor. Unlike reactions with bidentate analogues, monodentate phosphines promoted photolytic ROP of ferrocenophanes 1 and 10. MALDI-TOF analysis suggested a cyclic structure for the soluble poly(ferrocenyldimethylsilane), 8-cyclic, produced from 1 in this manner. While the polymer likewise produced from 10 was insoluble, the initiation step in the ROP process was modeled by isolation of a tris(phosphine)-substituted ring-opened ferrocenophane [Fe(PMe3)3{(eta5-C5H4)(CH2)2(C5H5)}][OCH2CH3] (13[OCH2CH3]) generated by irradiation of 10 and PMe3 in a protic solvent (EtOH). Studies of the cation 13 revealed that the Fe center reacts with a Cp- anion with loss of the phosphines to form [Fe(eta5-C5H5){(eta5-C5H4)(CH2)2(C5H5)}] (14) under conditions identical to those of the ROP experiments, confirming the likelihood of "back-biting" reactions to yield cyclic structures or macrocondensation to produce longer chains.  相似文献   

7.
Ring borylation of [Me4C2(eta5-C5H4)2CrCO] by B(C6F5)3 affords the zwitterionic complex {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}CrH(CO) (1), the first structurally characterized bent-metallocene complex of Cr(4+). This species decomposes thermally to the zwitterionic species {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}Cr (2) and the ionic species [Me4C2(eta5-C5H4)2CrCO][HB(C6F5)3] (3). The molecular structure of 2 is also described.  相似文献   

8.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

9.
Addressed herein is the 20+ year-old question of whether the true benzene and cyclohexene hydrogenation catalysts derived from the organometallic precursor [Rh(eta5-C5Me5)Cl2]2, 1, are homogeneous or heterogeneous. The methodology employed is that developed earlier (Lin, Y.; Finke, R. G. Inorg Chem. 1994, 33, 4891, "A More General Approach to Distinguishing Homogeneous from Heterogeneous Catalysis..."). The kinetic evidence especially, but also the metal product (nanoclusters plus bulk metal), Hg0 poisoning and other experiments, provide compelling evidence that Rh0 nanoclusters are the true benzene hydrogenation heterogeneous catalyst derived from [Rh(eta5-C5Me5)Cl2]2, 1, at the required more vigorous conditions of 50-100 degrees C and 50 atm H2. However, the same methods reveal that the cyclohexene hydrogenation catalyst derived from 1 at the milder conditions of 22 degrees C and 3.7 atm H2 is a nonnanocluster, homogeneous catalyst, most likely the previously identified complex, [Rh(eta5-C5Me5)(H)2(solvent)] (Gill, D. S.; White, C.; Maitlis, P. M J. C. S. Dalton Trans. 1978, 617). In short, the present results solve the two-decade-old problem of identifying the true benzene and cyclohexene hydrogenation catalysts derived from [Rh(eta5-C5Me5)Cl2]2. Perhaps most significant is the demonstration that the methodology employed has the ability to identify both heterogeneous and homogeneous catalysts from the same catalyst precursor.  相似文献   

10.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

11.
Reaction of [(eta5-C5H4Li)(eta7-C7H6Li)Cr]tmeda with a variety of dialkyl(dichloro)silanes in aliphatic solvents afforded the corresponding [1]silatrochrocenophanes. Structural characterization by X-ray diffraction analysis of the [1]silatrochrocenophanes bearing Me2Si, (iPr)2Si, and silacyclobutane bridges revealed tilt angles alpha of 15.56(12) degrees , 15.8(1) degrees , and 16.33(17) degrees , respectively. Analogously, a [2]silatrochrocenophane (6) was prepared in excellent yield by reaction of [(eta5-C5H4Li)(eta7-C7H6Li)Cr]tmeda with 1,2-dichloro-1,1,2,2-tetramethyldisilane. This complex also was characterized structurally and exhibited a tilt angle alpha of 2.60(15) degrees. The [1]silatrochrocenophane bearing the Me2Si bridge underwent facile and regioselective carbon-silicon bond cleavage with [Pt(PEt3)4] to give a very high yield of an oxidative addition product. The ring-opening polymerization of these novel [1]silatrochrocenophanes afforded ring-opened chromium-based polymers.  相似文献   

12.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

13.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

14.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   

15.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   

16.
A series of hafnocene complexes (eta5-C5Me4R1)(eta5-C5Me4R2)HfCl2 with [R1, R2] = [H, H] (1), [Me, H] (2), [Me, Me] (3), [Et, Me] (4), [(i)Pr, Me] (5), [SiMe(3), Me] (6), [(t)Bu, Me] (7), [(n)Bu, Me] (8), [(i)Bu, Me] (9), [Et, Et] (10), [(n)Bu, (n)Bu] (11), [(i)Bu, (i)Bu] (12) was tested as catalyst precursors for propylene oligomerization. Upon activation with methylaluminoxane or [Ph(3)C][B(C(6)F(5))(4)]/Al(i)Bu(3), complexes 2-4 and 8-12 catalyzed the dimerization of propylene to produce 4-methyl-1-pentene with selectivities ranging from 23.9 to 61.6 wt % in the product mixture. The selectivity was dependent on the nature of the substituents R(1) and R(2), with the highest value found for (eta5-C5Me4(i)Bu)2HfCl2 (12). Rapid deactivation was observed for 5-7, whereas (eta5-C5Me4H)2HfCl2 (1) polymerized propylene. 4-Methyl-1-pentene is proposed to form by repeated 1,2-insertion of propylene into the hafnocene methyl cation, followed by selective beta-methyl elimination. Detailed analysis of the byproduct distribution (isobutene, 1-pentene, 2-methyl-1-pentene, 2,4-dimethyl-1-pentene, 4-methyl-1-heptene, 4,6-dimethyl-1-heptene), determined by gas chromatography, was performed with the aid of a stochastic simulation involving rate constants for the propagation by insertion, beta-hydride elimination, and beta-methyl elimination. The rate of termination is dependent on the structure of the growing chain of the active species as well as on the bulkiness of the cyclopentadienyl ligands. The selectivity highly depends on the reaction conditions (pressure, temperature, concentration of methylaluminoxane). The rates of beta-methyl elimination leading to 4-methyl-1-pentene were proportional to propylene pressure for 2-4 and 8-10 but practically independent from propylene pressure for the sterically bulkier derivatives 11-12.  相似文献   

17.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

18.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

19.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

20.
The rates of hydrogenation of the N2 ligand in the side-on bound dinitrogen compounds, [(eta(5)-C5Me4H)2Zr]2(mu2,eta(2),eta(2)-N2) and [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford the corresponding hydrido zirconocene diazenido complexes have been measured by electronic spectroscopy. Determination of the rate law for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) establishes an overall second-order reaction, first order with respect to each reagent. These data, in combination with a normal, primary kinetic isotope effect of 2.2(1) for H2 versus D2 addition, establish the first H2 addition as the rate-determining step in N2 hydrogenation. Kinetic isotope effects of similar direction and magnitude have also been measured for hydrogenation (deuteration) of the two other zirconocene dinitrogen complexes. Measuring the rate constants for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) over a 40 degrees C temperature range provided activation parameters of deltaH(double dagger) = 8.4(8) kcal/mol and deltaS(double dagger) = -33(4) eu. The entropy of activation is consistent with an ordered four-centered transition structure, where H2 undergoes formal 1,2-addition to a zirconium-nitrogen bond with considerable multiple bond character. Support for this hypothesis stems from the observation of N2 functionalization by C-H activation of a cyclopentadienyl methyl substituent in the mixed ring dinitrogen complexes, [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford cyclometalated zirconocene diazenido derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号