首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs) following an acute injury to the optic nerve.  相似文献   

3.

Background  

Previously, we reported effects of the cry b mutation on circadian rhythms in period and timeless gene expression within isolated peripheral Drosophila tissues. We relied on luciferase activity driven by the respective regulatory genomic elements to provide real-time reporting of cycling gene expression. Subsequently, we developed a tool kit for the analysis of behavioral and molecular cycles. Here, we use these tools to analyze our earlier results as well as additional data obtained using the same experimental designs.  相似文献   

4.

Background  

The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes.  相似文献   

5.

Background  

Many studies of cocaine-responsive gene expression have focused on changes occurring during cocaine exposure, but few studies have examined the persistence of these changes with cocaine abstinence. Persistent changes in gene expression, as well as alterations induced during abstinence may underlie long-lasting drug craving and relapse liability.  相似文献   

6.

Background  

Pluripotent cells maintain a unique gene expression pattern and specific chromatin signature. In this study, we explored the effect of the methyltransferase inhibitor adenosine dialdehyde (AdOx) on pluripotency maintenance and gene expression in P19 embryonal carcinoma cells.  相似文献   

7.

Background  

We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound.  相似文献   

8.

Background  

The impairment of the pontine reticular formation (PRF) has recently been revealed to be histopathologically connected with focal-cortical seizure induced generalized convulsive status epilepticus. To elucidate whether the impairment of the PRF is a general phenomenon during status epilepticus, the focal-cortical 4-aminopyridine (4-AP) application was compared with other epilepsy models. The presence of "dark" neurons in the PRF was investigated by the sensitive silver method of Gallyas in rats sacrificed at 3 h after focal 4-AP crystal or systemic 4-AP, pilocarpine, or kainic acid application. The behavioral signs of the developing epileptic seizures were scored in all rats. The EEG activity was recorded in eight rats.  相似文献   

9.

Background  

Accurate and reproducible behavioral tests in animal models are of major importance in the development and evaluation of new therapies for central nervous system disease. In this study we investigated for the first time gait parameters of rat models for Parkinson's disease (PD), Huntington's disease (HD) and stroke using the Catwalk method, a novel automated gait analysis test. Static and dynamic gait parameters were measured in all animal models, and these data were compared to readouts of established behavioral tests, such as the cylinder test in the PD and stroke rats and the rotarod tests for the HD group.  相似文献   

10.

Background  

In situ hybridisation (ISH) combined with autoradiography is a standard method of measuring the amount of gene expression in histological sections, but the methods used to quantify gene expression in the resulting digital images vary greatly between studies and can potentially give conflicting results.  相似文献   

11.

Background  

Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.  相似文献   

12.

Background  

A physiological increase in extracellular ascorbate (AA), an antioxidant vitamin found throughout the striatum, elevates extracellular glutamate (GLU). To determine the role of behavioral arousal in this interaction, microdialysis was used to measure striatal GLU efflux in rats tested in either a lights-off or lights-on condition while reverse dialysis either maintained the concentration of AA at 250 μM or increased it to 1000 μM to approximate endogenous changes.  相似文献   

13.

Background  

Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination) and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning).  相似文献   

14.

Background  

Recent evidence suggests that some sex differences in brain and behavior might result from direct genetic effects, and not solely the result of the organizational effects of steroid hormones. The present study examined the potential role for sex-biased gene expression during development of sexually dimorphic singing behavior and associated song nuclei in juvenile zebra finches.  相似文献   

15.
16.

Background  

The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined.  相似文献   

17.

Background  

Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression.  相似文献   

18.

Background

Social behavior and interactions pervasively shape and influence our lives and relationships. Competition, in particular, has become a core topic in social neuroscience since it stresses the relevance and salience of social comparison processes between the inter-agents that are involved in a common task. The majority of studies, however, investigated such kind of social interaction via one-person individual paradigms, thus not taking into account relevant information concerning interdependent participants’ behavioral and neural responses. In the present study, dyads of volunteers participated in a hyperscanning paradigm and competed in a computerized attention task while their electrophysiological (EEG) activity and performance were monitored and recorded. Behavioral data and inter-brain coupling measures based on EEG frequency data were then computed and compared across different experimental conditions: a control condition (individual task, t0), a first competitive condition (pre-feedback condition, t1), and a second competitive condition following a positive reinforcing feedback (post-feedback condition, t2).

Results

Results showed that during competitive tasks participants’ performance was improved with respect to control condition (reduced response times and error rates), with a further specific improvement after receiving a reinforcing feedback. Concurrently, we observed a reduction of inter-brain functional connectivity (primarily involving bilateral prefrontal areas) for slower EEG frequency bands (delta and theta). Finally, correlation analyses highlighted a significant association between cognitive performance and inter-brain connectivity measures.

Conclusions

The present results may help identifying specific patterns of behavioral and inter-brain coupling measures associated to competition and processing of social reinforcements.
  相似文献   

19.

Background

Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8) ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve.

Results

Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG) ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia.

Conclusions

TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.
  相似文献   

20.

Background  

Chronic N-Methyl-D-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号