首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A zinc porphyrin dimer-fullerene supramolecular complex with a large association constant is assembled; efficient intramolecular photoinduced electron transfer from the singlet excited state of zinc porphyrin to the fullerene is observed.  相似文献   

2.
Trisporphyrinatozinc(II) (1-Zn) with imidazolyl groups at both ends of the porphyrin self-assembles exclusively into a light-harvesting cyclic trimer (N-(1-Zn)(3)) through complementary coordination of imidazolyl to zinc(II). Because only the two terminal porphyrins in 1-Zn are employed in ring formation, macrocycle N-(1-Zn)(3) leaves three uncoordinated porphyrinatozinc(II) groups as a scaffold that can accommodate ligands into the central pore. A pyridyl tripodal ligand with an appended fullerene connected through an amide linkage (C(60)-Tripod) was synthesized by coupling tripodal ligand 3 with pyrrolidine-modified fullerene, and this ligand was incorporated into N-(1-Zn)(3). The binding constant for C(60)-Tripod in benzonitrile reached the order of 10(8) M(-1). This value is ten times larger than those of pyridyl tetrapodal ligand 2 and tripodal ligand 3. This behavior suggests that the fullerene moiety contributes to enhance the binding of C(60)-Tripod in N-(1-Zn)(3). The fluorescence of N-(1-Zn)(3) was almost completely quenched (approximately 97 %) by complexation with C(60)-Tripod, without any indication of the formation of charge-separated species or a triplet excited state of either porphyrin or fullerene in the transient absorption spectra. These observations are explained by the idea that the fullerene moiety of C(60)-Tripod is in direct contact with the porphyrin planes of N-(1-Zn)(3) through fullerene-porphyrin pi-pi interactions. Thus, C(60)-Tripod is accommodated in N-(1-Zn)(3) with a pi-pi interaction and two pyridyl coordinations. The cooperative interaction achieves a sufficiently high affinity for quantitative and specific introduction of one equivalent of tripodal guest into the antenna ring, even under dilute conditions ( approximately 10(-7) M) in polar solvents such as benzonitrile. Additionally, complete fluorescence quenching of N-(1-Zn)(3) when accommodating C(60)-Tripod demonstrates that all of the excitation energy collected by the nine porphyrins migrates rapidly over the macrocycle and then converges efficiently on the fullerene moiety by electron transfer.  相似文献   

3.
Femtosecond time-resolved transient absorption studies have been performed to investigate the photoinduced energy and electron-transfer processes in Zn(II )porphyrin–Zn(II )chlorin–fullerene triad in which energy and oxidation potential gradients are directed along the donor–acceptor-linked arrays. Fast energy transfer (≈450 fs) from photoexcited Zn(II )porphyrin to Zn(II )chlorin was observed upon selective photoexcitation of Zn(II )porphyrin unit in the triad. In a nonpolar solvent such as toluene, the energy transfer from the excited singlet state of Zn(II )chlorin to fullerene occurs and is followed by the formation of an intermediate state with a time constant of nanoseconds, which was attributed to the intramolecular exciplex between Zn(II )chlorin and fullerene. In benzonitrile, on the other hand, the photoexcitation of the triad results in the fast electron transfer (<1 ps) from photoexcited Zn(II )chlorin to fullerene. The generated charge-separated species recombine with a time constant of ≈12 ps. The relatively fast charge separation and charge recombination rates imply that the strong electronic coupling between Zn(II )chlorin and fullerene moieties is probably induced by the folded conformation between Zn(II )chlorin and fullerene moieties which enhances direct through-space interaction between the proximately contacted π systems.  相似文献   

4.
Binding constants and thermodynamic parameters for 1:1 complexation of a porphyrin macroring, self-assembled from three trisporphyrinatozinc through imidazole-Zn coordination on the terminal porphyrins, with several multidentate pyridyl and fullerenyl ligands were examined. In benzonitrile, the ligand having one fullerenyl and two coordinative pyridyl moieties surprisingly afforded the highest affinity. The thermodynamic data of the complexation indicated that an unusual and fairly large positive entropic change, which may be attributed to extensive desolvation of the solutes especially from the large cavity of porphyrin macroring and fullerene surface, significantly contributed to the enhancement of the binding constant.  相似文献   

5.
We report the synthesis of two cyclic β-pyrrole unsubstituted meso-tetraphenyl bisporphyrins in which the porphyrin units are connected by two 2,3-hexadiynyl-1,6-dioxo or two hexyl-1,6-dioxo spacers, respectively. Both cyclic porphyrin dimers exist in solution as mixtures of two conformational isomers. In the solid state, the receptor with diynyl spacers forms a 1:1 complex with the icosahedral (I(h)) isomer of the trimetallic nitride endohedral fullerene Sc(3)N@C(80). In this complex the receptor adopts a scoop-shaped conformation having a dihedral angle of 87.25° between the two porphyrin planes. The hexyl spaced analogue, however, adopts a similar conformation upon encapsulation of one molecule of Sc(3)N@C(80) in a self-assembled dimeric capsule. The capsular complexes pack in columns and render the fullerene units completely isolated. In toluene solution, (1)H NMR experiments indicate that the endohedral fullerene Sc(3)N@C(80) is exclusively bound by the expanded isomer of both dimers. UV-vis and fluorescence titration experiments confirmed the existence of strong π-π interactions between the fullerene Sc(3)N@C(80) and the flexible bisporphyrin dimer with hexyl spacers. At micromolar concentration, the flexible receptor forms only a 1:1 complex with the endohedral fullerene with stability constant value of K(a) = 2.6 ± 0.3 × 10(5) M(-1).  相似文献   

6.
Photosynthetic reaction centers convert excitation energy from absorbed sunlight into chemical potential energy in the form of a charge-separated state. The rates of the electron transfer reactions necessary to achieve long-lived, high-energy charge-separated states with high quantum yields are determined in part by precise control of the electronic coupling among the chromophores, donors, and acceptors and of the reaction energetics. Successful artificial photosynthetic reaction centers for solar energy conversion have similar requirements. Control of electronic coupling in particular necessitates chemical linkages between active component moieties that both mediate coupling and restrict conformational mobility so that only spatial arrangements that promote favorable coupling are populated. Toward this end, we report the synthesis, structure, and photochemical properties of an artificial reaction center containing two porphyrin electron donor moieties and a fullerene electron acceptor in a macrocyclic arrangement involving a ring of 42 atoms. The two porphyrins are closely spaced, in an arrangement reminiscent of that of the special pair in bacterial reaction centers. The molecule is produced by an unusual cyclization reaction that yields mainly a product with C(2) symmetry and trans-2 disubstitution at the fullerene. The macrocycle maintains a rigid, highly constrained structure that was determined by UV-vis spectroscopy, NMR, mass spectrometry, and molecular modeling at the semiempirical PM6 and DFT (B3LYP/6-31G**) levels. Transient absorption results for the macrocycle in 2-methyltetrahydrofuran reveal photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene to form a P(?+)-C(60)(?-)-P charge separated state with a time constant of 1.1 ps. Photoinduced electron transfer to the fullerene excited singlet state to form the same charge-separated state has a time constant of 15 ps. The charge-separated state is formed with a quantum yield of essentially unity and has a lifetime of 2.7 ns. The ultrafast charge separation coupled with charge recombination that is over 2000 times slower is consistent with a very rigid molecular structure having a small reorganization energy for electron transfer, relative to related porphyrin-fullerene molecules.  相似文献   

7.
meso-Pyridine-appended zinc(II) porphyrins Mn and their meso-meso-linked dimers Dn assemble spontaneously, in noncoordinating solvents such as CHCl3, into tetrameric porphyrin squares Sn and porphyrin boxes Bn, respectively. Interestingly, formation of Bn from Dn proceeds via homochiral self-sorting assembly, which has been verified by optical separations of B1 and B2. Optically pure enantiomers of B1 and B2 display strong Cotton effects in the CD spectra, which reflect the length of the pyridyl arm, thus providing evidence for the exciton coupling between the noncovalent neighboring porphyrin rings. Excitation energy migration processes within Bn have been investigated by steady-state and time-resolved spectroscopic methods in conjunction with polarization anisotropy measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly associated with the excitation energy migration process within the Bn boxes, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the F?rster-type incoherent energy hopping model by assuming a number of hopping sites of N = 4 and an exciton coherence length of L = 2. Consequently, the excitation energy hopping rates between the zinc(II) diporphyrin units have been estimated for B1 (48 ps)(-1), B2 (98 +/- 3 ps)(-1), and B3 (361 +/- 6 ps)(-1). Overall, the self-assembled porphyrin boxes Bn serve as a well-defined three-dimensional model for the light-harvesting complex.  相似文献   

8.
Excitation of the peripheral Zn porphyrin units in a noncovalent five‐porphyrin array, formed by gable‐like zinc(II) bisporphyrins and a central free‐base meso‐tetrakis(4‐pyridyl)porphyrin in a 2:1 ratio, ( ZnP2 )2? ( TPyP ), does not lead to a quantitative sensitization of the luminescence of the free‐base porphyrin acceptor, even though there is an effective energy transfer. Time resolution of the luminescence evidences a quenching of TPyP upon sensitization by the peripheral ZnP2 . The time evolution of the TPyP fluorescence in the complex can be described by a bi‐exponential fitting with a major component of 180 ps and a minor one of 5 ns, compared to an isolated TPyP lifetime of 9.4 ns. The two quenched lifetimes are shown to be correlated to the presence of 2:1 and 1:1 complexes, respectively. No quenching of TPyP fluorescence occurs in ( ZnP2 )2?( TPyP ) at 77 K in a rigid solvent for which only an energy‐transfer process (τ=150±10 ps) from peripheral ZnP2 to the central TPyP is observed. An unusual HOMO–HOMO electron‐transfer reaction from ZnP2 to the excited TPyP units, responsible for the observed phenomena, is detected. The resulting charge‐separated state, ( ZnP2 )+2?( TPyP )? is found to recombine to the ground state with a lifetime of 11 ns.  相似文献   

9.
We describe the thermodynamic characterisation of the self‐sorting process experienced by two homodimers assembled by hydrogen‐bonding interactions through their cyclopeptide scaffolds and decorated with Zn–porphyrin and fullerene units into a heterodimeric assembly that contains one electron‐donor (Zn–porphyrin) and one electron‐acceptor group (fullerene). The fluorescence of the Zn–porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron‐transfer (PET) process occurring between the Zn–porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge‐separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo‐ and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound‐state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75–90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge‐transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75 % of the chromophores after excitation of both Zn–porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33 %). We conclude that the strength (stability constant (K)×effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn–porphyrin/fullerene cyclopeptide‐based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.  相似文献   

10.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

11.
We report new polychromophoric complexes, where different porphyrin (P) derivatives are covalently coupled to a redox active Mo center, MoL*(NO)Cl(X) (L* is the face-capping tridentate ligand tris(3,5-dimethylpyrazolyl) hydroborate and X is a phenoxide/pyridyl/amido derivative of porphyrin). The luminescence quantum yields of the bichromophoric systems (1, 2, and 5) were found to be an order of magnitude less than those of their respective porphyrin precursors. Transient absorption measurements revealed the formation of the porphyrin radical cation species (P(.)(+)) and photoinduced electron transfer from the porphyrin moiety to the respective Mo center in 1, 2, and 5. Electrochemical studies showed that the reduction potentials of the acceptor Mo centers in a newly synthesized pyridyl derivative (2; E(1/2)[Mo(I/0)] = approximately -1.4 V vs Ag/AgCl) and previously reported phenoxy- (1; E(1/2)[Mo(II/I)] = approximately -0.3 V vs Ag/AgCl) and amido- (3; E(1/2)[Mo(II/I)] = approximately -0.82 V vs Ag/AgCl) derivatives were varied over a wide range. Thus, studies with these complexes permitted us to correlate the probable effect of this potential gradient on the electron-transfer dynamics. Time-resolved absorption studies, following excitation at the Soret band of the porphyrin fragment in complexes 1, 2, and 5, established that forward electron transfer took place biexponentially from both S2 and S1 states of the porphyrin center to the Mo moiety with time constants 150-250 fs and 8-20 ps, respectively. In the case of MoL*(NO)ClX (where X is pyridine derivative 2), the high reduction potential for the MoI/0 couple allowed electron transfer solely from the S2 state of the porphyrin center. Time constants for the charge recombination process for all complexes were found to be 150-300 ps. Further, electrochemical and EPR studies with the trichromophoric complexes (3 and 4) revealed that the orthogonal orientation of the peripheral phenoxy/pyridyl rings negated the possibility of any electronic interaction between two paramagnetic Mo centers in the ground state and thereby the spin exchange, which otherwise was observed for related Mo complexes when two Mo centers are separated by a polyene system with comparable or larger separation distances.  相似文献   

12.
In the present article, tetraphenylporphyrin a new ratiometric fluorescence sensitizer for zinc ion has been proposed. Electronic absorption, emission and (1)H NMR spectral characteristics of meso-tetraphenylporphyrin (TPP) have been studied in acetonitrile medium in the presence of zinc perchlorate. Absorption spectral studies indicate the formation of a new complex between zinc ion and the porphyrin moiety in the ground state as distinguished from the characteristics of metalo(zinc) porphyrin compound. The energy of maximum fluorescence of porphyrin shifts towards blue with the addition of Zn(ClO(4))(2). Steady state emission studies point to the existence of two emitting species viz, the solvated and the complexed porphyrin in equilibrium. The fluorescence emission of tetraphenylporphyrin at 651-nm bands decreases while that at 605 nm increases upon zinc ion interaction in acetonitrile. Thus, the TPP can behave as a ratiometric fluorescent sensor. This fluorescence modulation of TPP should be applicable to dual-wavelength measurement of various biomolecules or enzyme activities. (1)H NMR spectra of the porphyrin suffered a radical change with the addition of zinc perchlorate which points to the formation of a new porphyrin complex. This change is due to the difference in the electron-donating ability of the pyrrolic nitrogens before and after complexation with Zn(2+). The values of equilibrium constant for the binding process have been determined in acetone and acetonitrile, in both ground and excited states.  相似文献   

13.
The relaxation dynamics of unsubstituted porphyrin (H2P), diprotonated porphyrin (H4P2+), and tetraoxaporphyrin dication (TOxP2+) has been investigated in the femtosecond-nanosecond time domain upon photoexcitation in the Soret band with pulses of femtosecond duration. By probing with spectrally broad femtosecond pulses, we have observed transient absorption spectra at delay times up to 1.5 ns. The kinetic profiles corresponding with the band maxima due to excited-state absorption have been determined for the three species. Four components of the relaxation process are distinguished for H2P: the unresolvably short B --> Qy internal conversion is followed by the Qy --> Qx process, vibrational relaxation, and thermalization in the Qx state with time constant approximately 150 fs, 1.8 ps, and 24.9 ps, respectively. Going from H2P to TOxP2+, two processes are resolved, i.e., B --> Q internal conversion and thermal equilibration in the Q state. The B --> Q time constant has been determined to be 25 ps. The large difference with respect to the B --> Qy time constant of H2P has been related to the increased energy gap between the coupled states, 9370 cm-1 in TOxP2+ vs 6100 cm-1 in H2P. The relaxation dynamics of H4P2+ has a first ultrafast component of approximately 300 fs assigned as internal conversion between the B (or Soret) state and charge-transfer (CT) states of the H4P2+ complex with two trifluoroacetate counterions. This process is followed by internal CT --> Q conversion (time constant 9 ps) and thermalization in the Q state (time constant 22 ps).  相似文献   

14.
Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S(1) state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.  相似文献   

15.
Four supramolecular fullerene-porphyrin-Cu(phen)(2)-ferrocene architectures were accessed by a twofold coordination strategy. At first, the phenanthroline-linked zinc porphyrins , conceived as supramolecular synthons, were combined with a ferrocene module, 3,8-(diferrocenylethynyl)phenanthroline, by a Cu(i)-mediated heteroleptic bisphenanthroline complexation (HETPHEN) protocol to furnish the porphyrin-Cu(phen)(2)-ferrocene aggregates . Subsequently, the fullerene module was incorporated by axial pyridyl coordination to the zinc porphyrin, affording . Their suitability as tetrads was interrogated using electrochemical and photophysical data.  相似文献   

16.
The bis-porphyrin system ZnP(2), in which two zinc porphyrins are connected by a phenanthroline linker in an oblique fashion, acts as a bifunctional receptor towards the complexation of free-base meso-5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin (4'-cis DPyP). In solution, NMR spectroscopy evidenced quantitative formation of the tris-porphyrin macrocyclic assembly ZnP(2)(4'-cis DPyP), in which the two fragments are held together by two axial 4'-N(pyridyl)-Zn interactions. The remarkable stability of the edifice (an association constant of about 6x10(8) M(-1) was determined by UV/Vis absorption and emission titration experiments in toluene) is due to the almost perfect geometrical match between the two interacting units. The macrocycle was crystallized and studied by X-ray diffraction, which confirmed the excellent complementarity of the two components. Photoinduced energy transfer from the singlet excited state of the zinc porphyrin chromophores to the free-base porphyrin occurs with an efficiency of 98 % (k(en)=2x10(10) s(-1) in toluene, ambient temperature) with a mechanism consistent with a dipole-dipole process with a low orientation factor.  相似文献   

17.
Toward the development of new strategies for the synthesis of multiporphyrin arrays, we have prepared and characterized (electrochemistry and static/time-resolved optical spectroscopy) a series of dyads composed of a zinc porphyrin and a free base porphyrin joined via imine-based linkers. One dyad contains two zinc porphyrins. Imine formation occurs under gentle conditions without alteration of the porphyrin metalation state. Five imine linkers were investigated by combination of formyl, benzaldehyde, and salicylaldehyde groups with aniline and benzoic hydrazide groups. The imine-linked dyads are quite stable to routine handling. The excited-state energy-transfer rate from zinc to free base porphyrin ranges from (70 ps)(-)(1) to (13 ps)(-)(1) in toluene at room temperature depending on the linker employed. The energy-transfer yield is generally very high (>97%), with low yields of deleterious hole/electron transfer. Collectively, this work provides the foundation for the design of multiporphyrin arrays that self-assemble via stable imine linkages, have predictable electronic properties, and have comparable or even enhanced energy-transfer characteristics relative to those of other types of covalently linked systems.  相似文献   

18.
A heterotropic ternary complex was obtained from a photochromic dithienylethene derivative bearing pyridyl groups (1), a chiral tetrasubstituted ferrocene as a scissoring component bearing two pyridyl and free-base porphyrin groups (3*), and a biaryl derivative as an intermediately bridging component bearing four zinc porphyrin handles (2). The three components are connected together via bidentate coordination bonds and mechanically interconnected. Exposure of the ternary complex to UV or visible light allowed for the isomerization of 1. This configurational change gave rise to an angular motion of 2, resulting in a scissoring motion of 3*. In the absence of 2, the isomerization of 1 does not lead to any defined motions of 3*. Thus, the heterotropic ternary complex may be regarded as a prototype of "molecular reacher" for remote manipulation of molecular events.  相似文献   

19.
Donor-acceptor dyads were constructed using zinc N-confused porphyrin (ZnNCP), a structural isomer of zinc tetraphenylporphyrin, as a donor, and fullerene as an electron acceptor. Two derivatives, pyridine-coordinated zinc N-confused porphyrin (Py:ZnNCP) and the zinc N-confused porphyrin dimer (ZnNCP-dimer) were utilized to form the dyads with an imidazole-appended fulleropyrrolidine (C60Im). These porphyrin isomers formed well-defined 1:1 supramolecular dyads (C60Im:ZnNCP) via axial coordination. The dyads were characterized by optical absorption and emission, ESI-mass, 1H NMR, and electrochemical methods. The binding constant, K, was found to be 2.8 x 10(4) M(-1) for C60Im:ZnNCP. The geometric and electronic structure of C60Im:ZnNCP were probed by using DFT B3LYP/3-21G methods. The HOMO was found to be on the ZnNCP entity, while the LUMO was primarily on the fullerene entity. The electrochemical properties of C60Im:ZnNCP was probed using cyclic voltammetry in o-dichlorobenzene, 0.1 n-Bu4NClO4. The Py:ZnNCP was found to be easier to oxidize by over 340 mV compared to Py:ZnTPP. Upon dyad formation via axial coordination, the first oxidation revealed an anodic shift of nearly 90 mV. Evidence of photoinduced charge separation from the singlet excited ZnNCP to the appended fullerene was established from time-resolved emission and nanosecond transient absorption studies.  相似文献   

20.
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant F?rster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号