首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whether common noise can induce complete synchronization in chaotic systems has been a topic of great relevance and long-standing controversy. We first clarify the mechanism of this phenomenon and show that the existence of a significant contraction region, where nearby trajectories converge, plays a decisive role. Second, we demonstrate that, more generally, common noise can induce phase synchronization in nonidentical chaotic systems. Such a noise-induced synchronization and synchronization transitions are of special significance for understanding neuron encoding in neurobiology.  相似文献   

2.
With few exceptions, studies of chaotic synchronization have focused on dissipative chaos. Though less well known, chaotic systems that lack dissipation may also synchronize. Motivated by an application in communication systems, we couple a family of ergodic maps on the N-torus and study the global stability of the synchronous state. While most trajectories synchronize at some time, there is a measure zero set that never synchronizes. We give explicit examples of these asynchronous orbits in dimensions two and four. On more typical trajectories, the synchronization error reaches arbitrarily small values and, in practice, converges. In dimension two we derive bounds on the average synchronization time for trajectories resulting from randomly chosen initial conditions. Numerical experiments suggest similar bounds exist in higher dimensions as well. Adding noise to the coupling signal destroys the invariance of the synchronous state and causes typical trajectories to desynchronize. We propose a modification of the standard coupling scheme that corrects this problem resulting in robust synchronization in the presence of noise.  相似文献   

3.
We report a general phenomenon concerning the effect of noise on phase synchronization in coupled chaotic oscillators: the average phase-synchronization time exhibits a nonmonotonic behavior with the noise amplitude. In particular, we find that the time exhibits a local minimum for relatively small noise amplitude but a local maximum for stronger noise. We provide numerical results, experimental evidence from coupled chaotic circuits, and a heuristic argument to establish the generality of this phenomenon.  相似文献   

4.
基于参数自适应控制的混沌同步   总被引:18,自引:0,他引:18       下载免费PDF全文
讨论了驱动系统和响应系统都是相同混沌映射但其中参数不同时的同步问题.采用参数自适应控制算法,当混沌映射为logistic映射时,得到两系统同步得一个充分条件,而为一般混沌映射时,得到两系统同步的一个必要条件.还讨论了存在相同噪音时的同步问题. 关键词:  相似文献   

5.
We study nontrivial effects of noise on synchronization and coherence of a chaotic Hodgkin-Huxley model of thermally sensitive neurons. We demonstrate that identical neurons which are not coupled but subjected to a common fluctuating input (Gaussian noise) can achieve complete synchronization when the noise amplitude is larger than a threshold. For nonidentical neurons, noise can induce phase synchronization. Noise enhances synchronization of weakly coupled neurons. We also find that noise enhances the coherence of the spike trains. A saddle point embedded in the chaotic attractor is responsible for these nontrivial noise-induced effects. Relevance of our results to biological information processing is discussed.  相似文献   

6.
Manojit Roy  R E Amritkar 《Pramana》1997,48(1):271-285
The effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with the logistic map as local dynamics and driven by identical noise at each site, we report that the number ofstructures (a structure is a group of neighbouring lattice sites for values of the variable follow which the certain predefined pattern) follows a power-law decay with the length of the structure. An interesting phenomenon, which we callstochastic coherence, is also reported in which the abundance and lifetimes of these structures show characteristic peaks at some intermediate noise strength.  相似文献   

7.
Lag synchronization is a recently discovered theoretical phenomenon where the dynamical variables of two coupled, nonidentical chaotic oscillators are synchronized with a time delay relative to each other. We investigate experimentally and numerically to what extent lag synchronization can be observed in physical systems where noise is inevitable. Our measurements and numerical computation suggest that lag synchronization is typically destroyed when the noise level is comparable to the amount of average system mismatch. At small noise levels, lag synchronization occurs in an intermittent fashion.  相似文献   

8.
Zhu L  Raghu A  Lai YC 《Physical review letters》2001,86(18):4017-4020
We present the first experimental observation of superpersistent chaotic transients. In particular, we investigate the effect of noise on phase synchronization in coupled chaotic electronic circuits and obtain the scaling relation that is characteristic of those extremely long chaotic transients.  相似文献   

9.
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.  相似文献   

10.
《Physics letters. A》2006,353(1):30-33
Noise-induced synchronization refers to the phenomenon where two uncoupled, independent nonlinear oscillators can achieve synchronization through a “common” noisy forcing. Here, “common” means identical. However, “common noise” is a construct which does not exist in practice. Noise by nature is unique and two noise signals cannot be exactly the same. How to justify and understand this central concept in noise-induced synchronization? What is the relation between noise-induced synchronization and the usual chaotic synchronization? Here we argue and demonstrate that noise-induced synchronization is closely related to generalized synchronization as characterized by the emergence of a functional relation between distinct dynamical systems through mutual interaction. We show that the same mechanism applies to the phenomenon of noise-induced (or chaos-induced) phase synchronization.  相似文献   

11.
In the paper, complete synchronization of two chaotic oscillators via unidirectional coupling determined by white noise distribution is investigated. It is analytically proved that chaos synchronization could be achieved with probability one merely via white-noise-based coupling. The established theoretical result supports the observation of an interesting phenomenon that a certain kind of white noise could enhance chaos synchronization between two chaotic oscillators. Furthermore, numerical examples are provided to illustrate some possible applications of the theoretical result.  相似文献   

12.
《Physics letters. A》1999,251(3):169-176
We present a new chaotic masking scheme by using synchronized chaotic systems. In this method, synchronization and message transmission phases are separated, and while synchronization is achieved in the synchronization phases, the message is only sent in message transmission phases. We show that if synchronization is achieved exponentially fast, then under certain conditions any message of any length could be transmitted and successfully recovered provided that the synchronization length is sufficiently long. We also show that the proposed scheme is robust with respect to noise and parameter mismatch under some mild conditions.  相似文献   

13.
We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region, the units of a chaotic network characterized by GCD=1 are in a chaotic zero-lag synchronization, whereas for GCD>1, the network splits into GCD-clusters in which clustered units are in zero-lag synchronization. These results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps. Type (II) is exemplified by simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity, synaptic noise and distribution of delays within neurons belonging to a node and between connecting nodes. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the network splits into clusters equal to the greatest common divisor of loops composing the network (spatial) and the periodicity of the external stimuli (temporal). The results suggest that neural information processing may take place in the transient to synchronization and imply a much shorter time scale for the inference of a perceptual entity.  相似文献   

14.
耦合哈密顿系统中测度同步的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
陈绍英  许海波  王光瑞  陈式刚 《物理学报》2004,53(12):4098-4110
测度同步现象是耦合哈密顿系统的一种重要性质.对规则系统和混沌系统的测度同步性 质作了深入研究,重点讨论了耦合哈密顿系统处于混沌状态时,系统测度同步的特点及系统 的相位关系.提出了一种定量判断测度同步的简单方法,考虑了高斯白噪声对系统中测度同 步性质的影响. 关键词: 耦合哈密顿系统 测度同步 相锁定 高斯白噪声  相似文献   

15.
Understanding the cause of the synchronization of population evolution is an important issue for ecological improvement. Here we present a Lotka-Volterra-type model driven by two correlated environmental noises and show, via theoretical analysis and direct simulation, that noise correlation can induce a synchronization of the mutualists. The time series of mutual species exhibit a chaotic-like fluctuation, which is independent of the noise correlation, however, the chaotic fluctuation of mutual species ratio decreases with the noise correlation. A quantitative parameter defined for characterizing chaotic fluctuation provides a good approach to measure when the complete synchronization happens.  相似文献   

16.
The effect of noise on phase synchronization in small sets and larger populations of weakly coupled chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results from the interplay between noise and the locking features of unstable periodic orbits. We show that in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the weak coupling region. The interplay between noise and weak coupling induces a collective motion in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase synchronization and the coherence resonance numerically observed in coupled chaotic R?ssler oscillators are verified experimentally with an array of chaotic electrochemical oscillators.  相似文献   

17.
秦洁  于洪洁 《物理学报》2007,56(12):6828-6835
通过对超混沌系统线性项与非线性项的适当分离配置,构造一个特殊的非线性耦合函数作为单元之间的耦合函数,提出非线性非对称耦合混沌同步方法,研究超混沌Rssler系统单元按照星形连接形式组成网络的同步问题.发现耦合强度在某一区域里存在着稳定的混沌同步现象.分析并讨论了不同参数在耦合过程中对混沌同步过程及其稳定性的影响.数值模拟结果证实该方法的有效性. 关键词: 超混沌同步 非线性耦合 R ssler系统 星形网络  相似文献   

18.
非线性函数耦合的Chen吸引子网络的混沌同步   总被引:5,自引:0,他引:5       下载免费PDF全文
Yu Hong-Jie  郑宁 《物理学报》2008,57(8):4712-4720
利用非对称非线性函数耦合混沌同步方法,讨论了Chen吸引子的混沌同步问题,数值模拟分析初始值和耦合强度因子的选择对于实现混沌同步的影响. 将非对称非线性函数耦合同步方法进一步推广发展到完全连接网络和由星形子网络构成的复杂大网络混沌同步的研究中. 提供了确定网络中神经元之间混沌同步状态稳定性的误差发展方程,并讨论各个耦合强度因子对网络同步稳定性过程的影响,给出了相应的稳定性范围. 通过数值模拟证明利用非线性函数作为耦合函数,实现完全连接网络、星形子网络构成大网络的混沌同步是有效的. 可以预测在网络的混沌同步 关键词: 非线性耦合函数 Chen吸引子 混沌同步 网络  相似文献   

19.
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.  相似文献   

20.
胡林曦  杨灿  何广强 《中国物理 B》2017,26(6):60304-060304
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号