首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胡亮  罗懋康 《物理学报》2017,66(13):130302-130302
柱面电磁波在各种非均匀非线性介质中的传播问题具有非常重要的研究价值.对描述该问题的柱面非线性麦克斯韦方程组进行精确求解,则是最近几年新兴的研究热点.但由于非线性偏微分方程组的极端复杂性,针对任意初边值条件的精确求解在客观上具有极高的难度,已有工作仅解决了柱面电磁波在指数非线性因子的非色散介质中的传播情况.因此,针对更为确定的物理场景,寻求能够精确描述其中更为广泛的物理性质的解,是一种更为有效的处理方法.本文讨论了具有任意非线性因子与幂律非均匀因子的非色散介质中柱面麦克斯韦方程组的行波精确解,理论分析表明这种情况下柱面电磁波的电场分量E已不存在通常形如E=g(r-kt)的平面行波解;继而通过适当的变量替换与求解相应的非线性常微分方程,给出电场分量E=g(lnr-kt)形式的广义行波解,并以例子展示所得到的解中蕴含的类似于自陡效应的物理现象.  相似文献   

2.
The dynamic analogue of the von Karman equations is used to study the forced response, including asymmetric vibrations and traveling waves, of a clamped circular plate subjected to harmonic excitations when the frequency of excitation is near one of the natural frequencies. The method of multiple scales, a perturbation technique, is used to solve the non-linear governing equations. The approach presented provides a great deal of insight into the nature of the non-linear forced resonant response. It is shown that in the absence of internal resonance (i.e., a combination of commensurable natural frequencies) or when the frequency of excitation is near one of the lower frequencies involved in the internal resonance, the steady state response can only have the form of a standing wave. However, when the frequency of excitation is near the highest frequency involved in the internal resonance it is possible for a traveling wave component of the highest mode to appear in the steady state response.  相似文献   

3.
Mathematical modeling of many autonomous physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear evolution equations plays a significant role in the study of nonlinear physical phenomena. In this article, the enhanced (G′/G)-expansion method has been applied for finding the exact traveling wave solutions of longitudinal wave motion equation in a nonlinear magneto-electro-elastic circular rod. Each of the obtained solutions contains an explicit function of the variables in the considered equations. It has been shown that the applied method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering fields.  相似文献   

4.
5.
In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti- Leon-Pempinelle equation, the Pochhammer-Chree equations and the Painleve integrable Burgers equation with free parameters. When the free parameters receive particular values, solitary wave solutions are constructed from the traveling waves. We use the Jacob/elliptic equation as an auxiliary equation in place of the second order linear equation. It is established that the proposed algorithm offers a further influential mathematical tool for constructing exact solutions of nonlinear evolution equations.  相似文献   

6.
The phenomenon of “wave resonance” which occurs at excitation of traveling waves in dissipative media possessing modular, quadratic and quadratically-cubic nonlinearities is studied. The mathematical model of this phenomenon is the inhomogeneous (or “forced”) equation of Burgers type. Such nonlinearities are of interest because the corresponding equations admit exact linearization and describe real physical objects. The presence of “accompanying sources” (traveling with the wave) on the right-hand side of the inhomogeneous equations ensures the inflow of energy into the wave, which thereafter spreads throughout the wave profile, flows to emerging shock fronts, and then dissipates due to linear and nonlinear losses. As an introduction, the phenomenon of wave resonance in ideal and dissipative media is described and physical examples are given. Exact expressions for nonlinear steady-state wave profiles are derived. Non-stationary processes of wave generation, spatial “beating” of amplitudes with different relationship between the speed of motion of the sources and the natural wave velocity in the medium are studied. Resonance curves are constructed that contain a nonlinear shift of the absolute maxima to the “supersonic” region. The features of the resonance in each of the three types of nonlinearity are discussed.  相似文献   

7.
The evolution of the Universe is considered by means of a nonlinear realization of affine and conformal symmetries via Maurer-Cartan forms. Conformal symmetry is realized by the geometry of similarity with the Dirac scalar dilaton. We provide preliminary quantitative evidence that the zeroth harmonic of the Dirac scalar dilaton may lead to observationally viable cosmology, where the type la supernova luminosity distances-redshift relation can be explained by vacuum dilaton dark energy. The diffeo-invariance of spin connection coefficients of the affine formulation leaves only one degree of freedom of strong gravitation waves. We discuss that the dark matter effect in spiral galaxies can be described by the gravitation waves expressed through the spin connection coefficients of the affine formulation. We show that, the evolution equations of the affine gravitons with respect to the dilaton zeroth mode coincide with the equations of “squeezed oscillator”. The list of theoretical and observational arguments is given in favor of that the origin of the Universe can be described by quantum vacuum creation of these squeezed oscillators.  相似文献   

8.
Third and fifth order nonlinear wave equations which arise in the theory of water waves possess solitary and periodic traveling waves. Solitary waves also arise in systems with dissipation and instability where a balance between these effects allows the existence of dissipative solitons. Here we search for a model equation to describe long wave dissipative solitons including fifth order dispersion. The equation found includes quadratic and cubic nonlinearities. For periodic solutions in a small box we characterize the rate of growth, and show that they do not blow up in finite time. Analytic solutions are constructed for special parameter values.  相似文献   

9.
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.  相似文献   

10.
Under investigation in this work is the general coupled nonlinear Schrödinger (gCNLS) equation, which can be used to describe a wide variety of physical processes. By using Darboux transformation, the new higher-order rogue wave solutions of the equation are well constructed. These solutions exhibit rogue waves on a multi-soliton background. Moreover, the dynamics of these solutions is graphically discussed. Our results would be of much importance in enriching and predicting rogue wave phenomena arising in nonlinear and complex systems.  相似文献   

11.
毛杰健  杨建荣 《物理学报》2013,62(13):130205-130205
基于一般的浅水波方程, 根据大尺度正压大气的特点, 得到无量纲的控制大尺度大气的动力学非线性方程组. 利用多尺度法, 由无量纲的动力学方程组导出了扰动位势的非线性控制方程. 采用椭圆方程构造该扰动位势控制方程的解, 获得了扰动位势和速度的多周期波与冲击波(爆炸波) 并存的解析解. 扰动位势的解表明经向和纬向具有不同周期和波长的周期波, 且都受纬向孤波的调制; 速度的解表明大尺度大气流动存在气旋和反气旋周期性分布的现象. 关键词: 浅水波方程 大尺度正压大气 解析解 非线性波  相似文献   

12.
In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653-665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.  相似文献   

13.
Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regarded as the first-order correction to the linear wave equation. To solve the equation, the biggest challenge is that the secular terms exist not only in the fundamental wave equation but also in the harmonic wave equation (unlike the Duffing oscillator, where they exist only in the fundamental wave equation). In order to overcome this difficulty and to obtain a steady periodic solution by the perturbation technique, the following procedures are taken: (i) for the fundamental wave equation, the secular term is eliminated and therefore a frequency response equation is obtained; (ii) for the harmonics, the cumulative solutions are sought by the Lagrange variation parameter method. It is shown by the results obtained that the second- and higher-order harmonic waves exist in a vibrating bar, of which the amplitude increases linearly with the distance from the source when its length is much more than the wavelength; the shift of the resonant peak and the amplitudes of the harmonic waves depend closely on nonlinear coefficients; there are similarities to a certain extent among the amplitudes of the odd- (or even-) order harmonics, based on which the nonlinear coefficients can be determined by varying the strain and measuring the amplitudes of the harmonic waves in different locations.  相似文献   

14.
We report the experimental observation of a "devil's staircase" in a time-dependent system considered as a paradigm for the transition to large-scale chaos in the universality class of Hamiltonian systems. A test electron beam is used to observe its non-self-consistent interaction with externally excited wave(s) in a traveling wave tube (TWT). A trochoidal energy analyzer records the beam energy distribution at the output of the interaction line. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a "devil's staircase" behavior for increasing excitation amplitude, due to the nonlinear forcing by the second wave on the pendulum-like motion of a charged particle in one electrostatic wave.  相似文献   

15.
Boomerons are described as accelerated solitons for special integrable systems of coupled wave equations. A general formalism based on the Lax pair method is set up to introduce such systems which look of Nonlinear Schr?dinger-type with linear, quadratic and cubic coupling terms. The one-soliton solution of such general systems is also briefly discussed. We display special instances of wave systems which are of potential interest for applications, including dispersion-less models of resonating waves. Among these, special attention and details are given to the celebrated equations describing the resonant interaction of three waves, in view of their application to optical pulse propagation in quadratic nonlinear media. For this particular case, we present exact solutions of the three-wave resonant interaction system, in the form of triplets moving with a common nonlinear velocity (simultons). The simultons have nontrivial phase-fronts and exist for different velocities and energy flows. We studied simulton stability upon propagation, and found that solitons with a velocity greater than a certain critical value are stable. We explore a novel consequence of the particle-like nature of three-wave simultons, namely their inelastic scattering with particular linear waves. Such phenomenon is associated with the excitation (decay) of stable (unstable) simultons by means of the absorption (emission) of the energy carried by a particular isolated pulse. Inelastic processes are exactly described in terms of boomerons. We also briefly consider collisions between different three-wave simultons.  相似文献   

16.
一般变换下的Jacobi椭圆函数展开法及应用   总被引:9,自引:1,他引:8       下载免费PDF全文
刘官厅  范天佑 《物理学报》2004,53(3):676-679
将在行波变换下的Jacobi椭圆函数展开法推广到范围非常广泛的一般函数变换下进行,利用这一方法求得了一些非线性发展方程的精确周期解,这些解包括了在行波变换下所求得的周期解. 证明了一些非线性发展方程的周期解一定是行波解. 关键词: 非线性发展方程 周期解 行波解 Jacobi椭圆函数  相似文献   

17.
In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect. Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A 383 (2019) 514], we derive a new $(2+1)$-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.  相似文献   

18.
A class of exact solutions for a coupled set of nonlinear equations describing the interaction between two propagating waves and a system of particles is found. These solutions include traveling wave solutions of the non-linear coupled equations.  相似文献   

19.
Simplified nonlinear evolution equations describing non-steady-state forced vibrations in an acoustic resonator having one closed end and the other end periodically oscillating are derived. An approach based on a nonlinear functional equation is used. The nonlinear Q-factor and the nonlinear frequency response of the resonator are calculated for steady-state oscillations of both inviscid and dissipative media. The general expression for the mean intensity of the acoustic wave in terms of the characteristic value of a Mathieu function is derived. The process of development of a standing wave is described analytically on the base of exact nonlinear solutions for different laws of periodic motion of the wall. For harmonic excitation the wave profiles are described by Mathieu functions, and their mean energy characteristics by the corresponding eigenvalues. The sawtooth-shaped motion of the boundary leads to a similar process of evolution of the profile, but the solution has a very simple form. Some possibilities to enhance the Q-factor of a nonlinear system by suppression of nonlinear energy losses are discussed.  相似文献   

20.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号