首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(24):126448
We study discrete solitons in zigzag discrete waveguide arrays with different types of linear mixing between nearest-neighbor and next-nearest-neighbor couplings. The waveguide array is constructed from two layers of one-dimensional (1D) waveguide arrays arranged in zigzag form. If we alternately label the number of waveguides between the two layers, the cross-layer couplings (which couple one waveguide in one layer with two adjacent waveguides in the other layer) construct the nearest-neighbor couplings, while the couplings that couple this waveguide with the two nearest-neighbor waveguides in the same layer, i.e., self-layer couplings, contribute the next-nearest-neighbor couplings. Two families of discrete solitons are found when these couplings feature different types of linear mixing. As the total power is increased, a phase transition of the second kind occurs for discrete solitons in one type of setting, which is formed when the nearest-neighbor coupling and next-nearest-neighbor coupling feature positive and negative linear mixing, respectively. The mobilities and collisions of these two families of solitons are discussed systematically throughout the paper, revealing that the width of the soliton plays an important role in its motion. Moreover, the phase transition strongly influences the motions and collisions of the solitons.  相似文献   

2.
We present theoretical and experimental studies on nonlinear beam propagation in lithium niobate waveguide arrays utilizing higher-order second harmonic bands. We find that the implementation of the higher-order second harmonic bands leads to a number of new effects. The combined interaction of two second harmonic bands with a propagating fundamental beam can lead to a complete inhibition of nonlinear effects or to the formation of discrete spatial solitons, depending only on the wavelength of the fundamental wave. Furthermore we analyze the properties of discrete solitons, allowing for linear coupling of the second harmonic. Here we predict and demonstrate experimentally a power dependent phase transition of the soliton topology.  相似文献   

3.
Sukhorukov AA  Kivshar Y 《Optics letters》2002,27(23):2112-2114
We suggest a novel concept of diffraction management in waveguide arrays and predict the existence of discrete gap solitons that possess the properties of both conventional discrete and Bragg grating solitons. We demonstrate that one can control both the soliton velocity and the propagation direction by varying the input light intensity.  相似文献   

4.
肖发俊  张鹏  刘圣  赵建林 《物理学报》2008,57(4):2529-2536
采用Petviashvili迭代法对光诱导平面波导阵列中的一维离散空间光孤子进行求解,利用分步束传播法对离散空间光孤子间的相干相互作用进行了详细的数值模拟.探讨了离散孤子间的相位差、孤子光强、波导阵列写入光的强度和周期以及外加电场对相互作用过程的影响.结果表明:离散孤子间的相位差对相互作用的影响与连续介质中的情况类似,不同相位差情况下的相互作用也表现为吸引、排斥以及能量转移等现象.同时,离散孤子间的相干相互作用过程(如融合距离和排斥间距等)均会受到孤子光强、波导阵列写入光的强度和周期以及外加电场大小的影响 关键词: 光诱导平面波导阵列 离散空间光孤子 相干相互作用  相似文献   

5.
We analyze discrete surface modes in semi-infinite binary waveguide arrays, which can support simultaneously two types of discrete solitons. We demonstrate that the analysis of linear surface states in such arrays provides important information about the existence of nonlinear surface modes and their properties. We find numerically the families of both discrete surface solitons and nonlinear Tamm (gap) states and study their stability properties.  相似文献   

6.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.  相似文献   

7.
《Physics letters. A》2020,384(25):126625
We propose a mechanism for realising a unidirectional flow of discrete solitons in optical waveguide arrays. Modulating the nonlinear interaction strength in each waveguide according to a double reflectionless potential well with slight difference in the depths of its two wells, we achieve a unidirectional flow of the soliton propagation. We verify clearly, through the transport coefficients as in terms of the speed of the incident soliton, that an incident soliton velocity window of finite width exists where unidirectional flow can be realised. We discuss the physics underlying this behaviour on the basis of energy exchange between the soliton's kinetic and interaction energies.  相似文献   

8.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.   相似文献   

9.
Egorov O  Lederer F  Staliunas K 《Optics letters》2007,32(15):2106-2108
We describe what we believe to be novel types of discrete cavity solitons in nonlinear waveguide arrays that are driven by an external holding beam. We demonstrate that a holding beam with a definite inclination drives the system in a subdiffractive regime and allows the formation of stable discrete cavity solitons. We predict the existence of both bright and dark moving midband discrete cavity solitons for an identical set of system parameters for both focusing and defocusing Kerr nonlinearities.  相似文献   

10.
We observe experimentally higher-order solitons in waveguide arrays with defocusing saturable nonlinearity. Such solitons can comprise several in-phase bright spots and are stable above a critical power threshold. We elucidate the impact of the nonlinearity saturation on the domains of existence and stability of the observed complex soliton states.  相似文献   

11.
We demonstrate that an array of discrete waveguides on a slab substrate, both featuring chi2 nonlinearity, supports stable solitons composed of discrete and continuous components. Two classes of fundamental composite soliton are identified: ones consisting of a discrete fundamental-frequency (FF) component in the waveguide array, coupled to a continuous second-harmonic (SH) component in the slab waveguide, and solitons with an inverted FF/SH structure. Twisted bound states of the fundamental solitons are found, too. In contrast with the usual systems, the intersite-centered fundamental solitons and bound states with the twisted continuous components are stable over almost the entire domain of their existence.  相似文献   

12.
We have investigated both theoretically and experimentally the power threshold of discrete Kerr surface solitons at the interface between a discrete one-dimensional (1D) (waveguide array) and a continuous 1D (slab waveguide) AlGaAs medium. Decreasing power thresholds were predicted and measured for soliton trapping at sites with increasing distance from the boundary. The thresholds approached asymptotically the power required for a discrete soliton of equivalent width in an infinite lattice. The minimum threshold coincided with a minimum in the interchannel coupling strength.  相似文献   

13.
《Physics letters. A》2020,384(26):126654
We present a design and protocol to achieve an essential feature of an optical transistor, namely the amplification of input signal with the use of discrete solitons in waveguide arrays. We consider the scattering of a discrete soliton by a reflectionless potential in the presence of a control soliton. We show that at the sharp transition region between full reflectance and full transmittance, the intensity of the reflected or transmitted soliton is highly sensitive to the intensity of the control soliton. This suggests a setup of signal amplifier. For realistic purposes, we modulate the parameters of the reflectionless potential well to achieve a performance of amplifier with a controllable amplification. To facilitate the experimental realization, we calculate the amplification factor in terms of the parameters of the potential well and the input power of the control soliton. The suggested signal amplifier device will be an important component in the all-optical data processing.  相似文献   

14.
We demonstrate that both the linear (diffraction) and the nonlinear dynamics of two-dimensional waveguide arrays are considerably more complex and versatile than their one-dimensional counterparts. The discrete diffraction properties of these arrays can be effectively altered, depending on the propagation Bloch k-vector within the first Brillouin zone of the lattice. In general, this diffraction behavior is anisotropic and therefore permits the existence of a new class of discrete elliptic solitons in the nonlinear regime.  相似文献   

15.
Light propagation in one-dimensional nonlinear waveguide arrays with self-defocusing intensity-resonant nonlinearity is investigated theoretically. We study thoroughly conditions for existence and stability of both gap and discrete dark solitons. According to the linear stability analysis both fundamental types (on-site and intersite) of gap solitons may be stable. Discrete dark solitons are unstable except in the low-power regime and, depending on system parameters, evolve into either gray solitons, breathers, or background radiation. Mobility of these solitons is analyzed by the free energy concept: gap solitons are immobile but dark solitons can be easily set in motion.  相似文献   

16.
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory.  相似文献   

17.
We study theoretically nonlinear surface waves in optical lattices and show that solitons can exist at the heterointerface between two different semi-infinite 1D waveguide arrays, as well as at the boundaries of a 2D nonlinear lattice. The existence and properties of these surface soliton solutions are investigated in detail.  相似文献   

18.
We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a parabolic curve in the region where the linear refractive index increases and a straight line outside the waveguide. The acceleration of the soliton depends on the beam intensity: higher amplitude solitons experience higher acceleration. Numerical calculations using an implicit Crank–Nicolson scheme confirm the result of the particle theory. Combining these propagation properties with the theory about bound-N-soliton, we study the break up of such a bound-N-soliton in a ramp waveguide. In a ramp waveguide, a bound-N-soliton will always be splitted into N independent solitons with the higher amplitude soliton emitted first. The amplitude of the separated solitons after break up are calculated using the soliton theory as if the solitons are independent. Numerical simulations show that the results agree quite well with this theoretical prediction, indicating that the interaction during break up has only little influence.  相似文献   

19.
We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a parabolic curve in the region where the linear refractive index increases and a straight line outside the waveguide. The acceleration of the soliton depends on the beam intensity: higher amplitude solitons experience higher acceleration. Numerical calculations using an implicit Crank-Nicolson scheme confirm the result of the particle theory. Combining these propagation properties with the theory about bound-N-soliton, we study the break up of such a bound-N-soliton in a ramp waveguide. In a ramp waveguide, a bound-N-soliton will always be splitted intoN independent solitons with the higher amplitude soliton emitted first. The amplitude of the separated solitons after break up are calculated using the soliton theory as if the solitons are independent. Numerical simulations show that the results agree quite well with this theoretical prediction, indicating that the interaction during break up has only little influence. On Leave from Jurusan Matematika, Universitas Brawijaya, Jl. MT Haryono 167 Malang Indonesia.  相似文献   

20.
Photovoltaic photorefractive binary waveguide arrays are fabricated by proton implantation and selective light illumination on top of an iron-doped near stoichiometric lithium niobate crystal. Linear discrete diffraction and nonlinear formation of gap solitons were investigated by single-channel excitation using Gaussian light beams coupled into either wide or narrow waveguide channels. The results show that, at low power, linear light propagation leads to discrete diffraction, whilst for higher input power the focusing mechanism dominates, finally leading to the formation of gap solitons in the binary waveguide arrays. Our simulation of light propagation based on a nonlinear beam propagation method confirms the experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号