首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices.  相似文献   

2.
The mechanism of destabilization is studied for the rotating vortices (scroll waves and spiral waves) in excitable media induced by a parameter modulation in the form of a travelling-wave. It is found that a rigid rotating spiral in the two-dimensional (2D) system undergoes a synchronized drift along a straight line, and a 3D scroll ring with its filament closed into a circle can be reoriented only if the direction of wave number of a travelling-wave perturbation is parallel to the ring plane. Then, in order to describe the behaviour of the synchronized drift of spiral wave and the reorientation of scroll ring, the approximate formulas are given to exhibit qualitative agreements with the observed results.  相似文献   

3.
We report experimental results on spiral and scroll waves in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction. The propagating concentration waves are detected by two-dimensional photometry and optical tomography. Wave pulses can disappear in front-to-front and front-to-back collisions. This anomaly causes the nucleation of vortices from collisions of three nonrotating waves. In three-dimensional systems, these vortices are scroll rings that rotate around initially circular filaments. Depending on reactant concentrations, the filaments shrink or expand indicating positive and negative filament tensions, respectively. Shrinkage results in vortex annihilation. Expansion is accompanied by filament buckling and bending, which is interpreted as developing Winfree turbulence. We also describe the initiation of scroll ring pairs in four-wave collisions. The two filaments are stacked on top of each other and their motion suggests filament repulsion.  相似文献   

4.
Scroll waves are an important example of self-organisation in excitable media. In cardiac tissue, scroll waves of electrical activity underlie lethal ventricular arrhythmias and fibrillation. They rotate around a topological line defect which has been termed the filament. Numerical investigation has shown that anisotropy can substantially affect the dynamics of scroll waves. It has recently been hypothesised that stationary scroll wave filaments in cardiac tissue describe geodesics in a space whose metric is the inverse diffusion tensor. Several computational studies have validated this hypothesis, but until now no quantitative theory has been provided to study the effects of anisotropy on scroll wave filaments. Here, we review in detail the recently developed covariant formalism for scroll wave dynamics in general anisotropy and derive the equations of motion of filaments. These equations are fully covariant under general spatial coordinate transformations and describe the motion of filaments in a curved space whose metric tensor is the inverse diffusion tensor. Our dynamic equations are valid for thin filaments and for general anisotropy and we show that stationary filaments obey the geodesic equation. We extend previous work by allowing spatial variations in the determinant of the diffusion tensor and the reaction parameters, leading to drift of the filament.  相似文献   

5.
钱郁 《物理学报》2012,61(15):158202-158202
本文首先研究了时空调制对可激发介质中周期螺旋波波头动力学行为的影响. 随着时空调制的增大, 螺旋波经历了周期螺旋波、外滚螺旋波、旅行螺旋波和内滚螺旋波的显著变化. 通过定义序参量来定量的描述由时空调制引起的螺旋波在不同态之间非平衡跃迁的临界条件, 及漫游螺旋波波头圆滚圆半径随调制参数的变化情况. 当时空调制增大到某个临界值时, 螺旋波发生了破碎; 再增加时空调制, 螺旋波则发生了衰减, 系统最终演化为空间均匀静息态. 在文中给出了螺旋波发生破碎和衰减的机理和原因. 最后将时空调制方法运用于漫游螺旋波, 实现了将漫游螺旋波控制成周期螺旋波, 或将其控制为空间均匀静息态.  相似文献   

6.
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.  相似文献   

7.
A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the topological charge of the generated or annihilated spiral pair must be opposite. Additionally, we obtain another equation on scroll waves, which shows that singular filaments of scroll waves occur on a set of one-dimensional curves which may be either closed loops or infinite lines.  相似文献   

8.
Rotating spiral and scroll waves (vortices) are investigated in the FitzHugh-Nagumo model of excitable media. The focus is on a parameter region in which there exists bistability between alternative stable vortices with distinct periods. Response functions are used to predict the filament tension of the alternative scrolls and it is shown that the slow-period scroll has negative filament tension, while the filament tension of the fast-period scroll changes sign within a hysteresis loop. The predictions are confirmed by direct simulations. Further investigations show that the slow-period scrolls display features similar to delayed after-depolarization and tend to develop into turbulence similar to ventricular fibrillation (VF). Scrolls with positive filament tension collapse or stabilize, similar to monomorphic ventricular tachycardia (VT). Perturbations, such as boundary interaction or shock stimulus, can convert the vortex with negative filament tension into the vortex with positive filament tension. This may correspond to transition from VF to VT unrelated to pinning.  相似文献   

9.
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka   (where kk is the wave-number and aa the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.  相似文献   

10.
11.
针对螺旋线型三导体脉冲形成线的快波振荡问题,提出一种阻抗分两段阶梯变化的螺旋线结构,分析了此类螺旋线快波反射与慢波反射相互抵消快波的条件,给出两段变阻抗螺旋线慢波系数之间的关系式以及匝数密度之比计算方法,通过仿真计算证明该方法能有效消除快波反射对螺旋线输出脉冲的影响。  相似文献   

12.
Universal relationships between the medium excitability and the angular velocity and the core radius of rigidly rotating spiral waves in excitable media are derived for situations where the wave front is a trigger wave and the wave back is a phase wave. Two universal limits restricting the region of existence of spiral waves in the parameter space are demonstrated. The predictions of the free-boundary approach are in good quantitative agreement with results from numerical reaction-diffusion simulations performed on the Kessler-Levine model.  相似文献   

13.
孙中浩  董超  张亚春  何湘  倪晓武  骆晓森 《强激光与粒子束》2018,30(5):053201-1-053201-6
为了研究飞秒光丝阵列对10 GHz电磁波的吸收特性,建立了飞秒光丝阵列吸收电磁波的有限元模型,研究了光丝内电子温度、电子数密度、光丝直径和电磁波的极化等参数对吸收系数的影响。研究结果表明:当电磁波偏振方向与光丝轴向垂直时,阵列对电磁波是透明的;增加光丝内电子数密度或提高电子温度,吸收系数先增大后减小;当光丝直径与电磁波趋肤深度相等时,吸收系数达到最大值。对于S极化电磁波,当光丝直径为50 μm时,吸收系数随入射角的增大而变大;当光丝直径为100~200 μm时,在入射角较小时,吸收系数随入射角的增大而变大;在入射角较大时会出现吸收峰值,最高可达0.45,且光丝直径越大,吸收峰值对应的入射角就越小;对于P极化电磁波,吸收系数随入射角增大而降低。  相似文献   

14.
In this paper, theoretical calculations based on dipole-limit are performed to investigate the effects of curvature on the surface plasmon resonance (SPR) properties of nanometer size gold spheroid and shell. By comparing the aspect ratio with the shell thickness, we demonstrated that the curvature radius is a common better factor that can be used to predict the SPR wavelength and shift fashion. For nanospheroid, increasing the ratio of curvature radius corresponding to the climaxes leads to an increase in the ratio of SPR wavelength, whereas increasing the ratio of curvature radius of outer and inner surface in nanoshell leads to an decrease in the ratio of SPR wavelength. As a morphologic factor, curvature radius plays an important role in affecting the distribution of electron density, and consequently controlling the SPR frequency.  相似文献   

15.
We study the asymptotic behavior of scroll wave turbulence in large three-dimensional excitable media modeled by FitzHugh-Nagumo equations. The focus is on the type of turbulence caused by negative tension of scroll wave filaments, which is considered to be one of the mechanisms of cardiac fibrillation. We discovered that the initial increase in turbulence complexity can be followed by intermittent self-organization, when complex filament tangles are replaced by a small number of relatively stable triple filament strands. The intermittency is the result of a competition between the destabilizing effect of negative tension and mutual attraction of filaments with similar orientation.  相似文献   

16.
It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation.  相似文献   

17.
螺旋波在不同的物理、化学和生物系统中普遍存在.周期外场,比如极化电场,尤其是具有旋转对称性的圆极化电场可对螺旋波动力学产生重要影响.本文综述了极化电场对可激发介质中螺旋波的控制,包括共振漂移、同步、手征对称性破缺、多臂螺旋波的稳定、次激发介质中的螺旋波、三维回卷波湍流态的控制、心脏组织中螺旋波的去钉扎、心脏组织中螺旋波湍流态的控制等.  相似文献   

18.
董丽劳  白占国  贺亚峰 《物理学报》2012,61(12):120509-120509
在非均匀可激发介质中,采用Barkley模型数值模拟了稀螺旋波和密螺旋波, 并对二者的动力学行为随参数的变化进行了研究. 结果发现:稀螺旋波的旋转频率随参数b的增加迅速减小,之后趋于饱和, 显示出不同于密螺旋波的行为;两种螺旋波的周期和波长随参数ε 和非均匀区域尺寸R的增加而增加,相对稀螺旋波而言,密螺旋波的性质对R的依赖更为敏感; 稀螺旋波端点的波速随R的增加而减小,与密螺旋波波速变化趋势相反. 另外,由于非均匀区域的影响,当ε 或b 超过某一临界值时,螺旋波臂上出现缺陷点.  相似文献   

19.
Employing Biot's theory of wave propagation in liquid saturated porous media, axially symmetric vibrations of fluid-filled and empty poroelastic circular cylindrical shells of infinite extent are investigated for different wall-thicknesses. Let the poroelastic cylindrical shells are homogeneous and isotropic. The frequency equation of axially symmetric vibrations each for a pervious and an impervious surface is derived. Particular cases when the fluid is absent are considered both for pervious and impervious surfaces. The frequency equation of axially symmetric vibrations propagating in a fluid-filled and an empty poroelastic bore, each for a pervious and an impervious surface is derived as a limiting case when ratio of thickness to inner radius tends to infinity as the outer radius tends to infinity. Cut-off frequencies when the wavenumber is zero are obtained for fluid-filled and empty poroelastic cylindrical shells both for pervious and impervious surfaces. When the wavenumber is zero, the frequency equation of axially symmetric shear vibrations is independent of nature of surface, i.e., pervious or impervious and also it is independent of presence of fluid in the poroelastic cylindrical shell. Non-dimensional phase velocity for propagating modes is computed as a function of ratio of thickness to wavelength in absence of dissipation. These results are presented graphically for two types of poroelastic materials and then discussed. In general, the phase velocity of an empty poroelastic cylindrical shell is higher than that of a fluid-filled poroelastic cylindrical shell.The phase velocity of a fluid-filled bore is higher than that of an empty poroelastic bore. Previous results are shown as a special case of present investigation. Results of purely elastic solid are obtained.  相似文献   

20.
The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potas- sium, Sodium) is investigated, the dynamics of the node is described by Hodgkin-Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and xK ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and xK ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号