首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
多组分颗粒稠密气固两相流动的数值模拟   总被引:8,自引:0,他引:8  
基于气体分子运动理论和颗粒动理学方法,建立多组分颗粒气固两相流等温流动模型。模型考虑了颗粒相各组分颗粒温度的差异、气相与颗粒相以及颗粒相各组分之间的动量和能量的传递和耗散,以及相间作用。建立颗粒相粘性系数、颗粒相压力等物性参数计算模型。模拟计算颗粒相浓度、粒径分布等参数与实测值相吻合。  相似文献   

2.
Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe flows homoclinic to a time-periodic edge state that display the essential properties of turbulent bursting. During a burst, vortical structures and the associated energy dissipation are highly localized near the wall, in contrast with the familiar regeneration cycle.  相似文献   

3.
Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised.  相似文献   

4.
We investigate the bulk rheology of dense granular flow down a rough slope, where the density profile has been found to show a plateau except for the boundary layers in simulations [Silbert et al., Phys. Rev. E 64, 051302 (2001)]. It is demonstrated that both the Bagnold scaling and the framework of kinetic theory are applicable in the bulk, which allows us to extract the constitutive relations from simulation data. The detailed comparison of our data with the kinetic theory shows quantitative agreement for the normal and shear stresses, but there exists a slight discrepancy in the energy dissipation, which causes a rather large disagreement in the kinetic theory analysis of the flow.  相似文献   

5.
6.
苏涛  冯耀东  赵宏武  黄德财  孙刚 《物理学报》2013,62(16):164502-164502
在颗粒流的研究中引入了一个正态分布的随机力场, 并通过计算机模拟研究了该力场对均匀颗粒流的影响. 结果发现: 随机力场基本上不改变均匀颗粒流的平均密度和速度, 对颗粒流密度的涨落也影响很小. 随机力场对均匀颗粒流的影响主要体现在它可提高速度的涨落, 它与颗粒体系的耗散性质相抗衡, 使颗粒流维持一定的波动能量. 研究结果还显示: 通过随机力场所获得的波动能量并没有均匀分布到各个自由度上, 由于颗粒体系的耗散性质颗粒体系难以达到能均分状态. 关键词: 颗粒物质 随机力 分子动力学模拟  相似文献   

7.
The dynamics of homogeneous shear turbulence laden with spherical finite-size particles is investigated using fully resolved numerical simulations to understand how the presence of particles modulates turbulent shear flows. We focus on a dilute flow laden with non-sedimenting particles whose diameter is slightly smaller than or comparable with those of vortex cores in turbulence. An immersed boundary method is adopted to represent a spherical finite-size particle. Numerical results show that the presence of particles augments the viscous dissipation of turbulence kinetic energy, which leads to a slower increase in the turbulence energy. Although the augmentation of energy dissipation occurs predominantly inside viscous layers surrounding particles in an initial period, the contribution from their outside becomes more significant due to the modification of turbulence structures as turbulence develops. It is found that the particles exhibit weak tendency to accumulate in vortex layers. The particles approaching and colliding with vortex layers induce large velocity fluctuations, which leads to the generation and shedding of thin vortex tubes. Newly generated vortex tubes interact with developed vortex tubes and layers, and modify the entire structure of the vorticity field.  相似文献   

8.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

9.
This paper presents the investigation of the clustering of the intruders in a vertically vibrated granular bed by means of event-driven simulations.The results indicate that the position of intruders in the vertical direction is not a key factor for their aggregation.Energy dissipation of the intruders and host particles are calculated in the process of intruder-host and host-host collisions.The relative energy dissipation of the intruders to that of the host particles is obtained.We find that clustering of the intruders happens when the relative energy dissipation is negative.The conclusion is verified when the restitution coefficient,density and diameter of the intruders are varied.  相似文献   

10.
11.
《Physica A》1996,231(4):417-424
Collisions between granular particles are irreversible processes which cause dissipation of mechanical energy by fragmentation or heating of the colliders. The knowledge of these phenomena is essential for the understanding of the behaviour of complex systems of granular particles. We have developed a model for inelastic collisions of granular particles and calculated the velocity restitution coefficients, which describe all possible collisions in the system. The knowledge of these coefficients allows for event-driven many-particle simulations which cannot be performed in the frame of molecular dynamics. This approach has the advantage that very large particle numbers can be treated which are necessary for the understanding of intrinsic large-scale phenomena in granular systems.  相似文献   

12.
Chuen-Shii Chou   《Physica A》2001,290(3-4)
By extending the constitutive theories for homogeneous granular flows of highly inelastic spheres by Richman (J. Rheol 33 (1989) 1293), Chou (J. CSME 16-6 (1995) 577), and Chou and Richman (Physica A 259 (1998) 430), the collisional source of the second moment of fluctuation velocity and pressure tensor were developed in this study for inhomogeneous rapid granular flows of identical smooth highly inelastic spheres. The important mean fields in this flow are the solid fraction, mean velocity, and full second moment of fluctuation velocity. The collisional source of second moment and the collisional flux of momentum are based upon an anisotropic Maxwellian velocity distribution function. The constitutive theory was combined with the experimental results measured by Hsiau and Jang (Exp. Thermal Fluid Sci. 17 (1998) 202) so as to determine the profiles of pressure tensor and collision source of second moment in the inhomogeneous rapid granular shear flows of inelastic spheres. The normal pressure discrepancies were also observed.  相似文献   

13.
《Physica A》2006,369(2):535-544
Local stress fluctuations are measured in annular rapid shear flows of granular medium made of steel spheres with 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity on intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of the spherical steel balls. Shearing of granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus based on piezoelectric phenomenon. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations is then investigated by different means through monodisperse and bidisperse packings.  相似文献   

14.
A. Tordesillas 《哲学杂志》2013,93(32):4987-5016
Force chain buckling, leading to unjamming and shear banding, is examined quantitatively via a discrete element analysis of a two-dimensional, densely-packed, cohesionless granular assembly subject to quasistatic, boundary-driven biaxial compression. A range of properties associated with the confined buckling of force chains has been established, including: degree of buckling, buckling modes, spatial and strain evolution distributions, and relative contributions to non-affine deformation, dilatation and decrease in macroscopic shear strength and potential energy. Consecutive cycles of unjamming–jamming events, akin to slip–stick events arising in other granular systems, characterize the strain-softening regime and the shear band evolution. Peaks in the dissipation rate, kinetic energy and local non-affine strain are strongly correlated: the largest peaks coincide with each unjamming event that is evident in the concurrent drops in the macroscopic shear stress and potential energy. Unjamming nucleates from the buckling of a few force chains within a small region inside the band. A specific mode of force chain buckling, prevalent in and confined to the shear band, leads to above-average levels of local non-affine strain and release of potential energy during unjamming. Ongoing studies of this and other buckling modes from a structural stability standpoint serve as the basis for the formulation of internal variables and associated evolution laws, central to the development of thermomicromechanical constitutive theory for granular materials.  相似文献   

15.
The flow of drops suspended on an inclined surface, are studied by numerical simulations at finite Reynolds numbers. The flow is driven by the acceleration due to gravity, and there is no pressure gradient in the flow direction. The effect of the Reynolds number, the Capillary number and density ratio on the distribution of drops and the fluctuation energy across the channel are investigated. It is found that drops tend to stay away from the channel floor, which is consistent with the behavior observed in the granular flow regime. Drops that are less deformable will stay further away from the channel floor. Also, drops appear at a larger distance from the floor as the Reynolds number increases. Simulations at large density ratios show that results are more compatible with computer simulations of granular flows. The behavior observed here resembles more the granular flow regime when the restitution coefficient is low.  相似文献   

16.
Many continuum theories for granular flow produce an equation of motion for the fluctuating kinetic energy density (granular temperature) that accounts for the energy lost in inelastic collisions. Apart from the presence of an extra dissipative term, this equation is very similar in form to the usual temperature equation in hydrodynamics. It is shown how a lattice-kinetic model based on the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a miscible two-component fluid may be modified to model the continuum equations for granular flow. This is done by noting that the variable corresponding to the concentration of one species follows an equation that is essentially analogous to the granular temperature equation. A simulation of an unforced granular fluid using the modified model reproduces the phenomenon of clustering instability, namely the spontaneous agglomeration of particles into dense clusters, which occurs generically in all granular flows. The success of the continuum theory in capturing the gross features of this basic phenomenon is discussed. Some shear flow simulations are also presented.  相似文献   

17.
The formation of density waves and the effect of wall roughness on them are studied using molecular dynamics simulations of gravity-driven granular Poiseuille flow. Three basic types of structures are found in moderately dense flows: a plug, a sinuous wave and a slug; a new varicose wave mode has been identified in dense flows with channels of large widths at moderate dissipations; only clump-like structures appear in dilute flows. The simulation results are contrasted with the predictions of a linear stability analysis of the kinetic-theory continuum equations for granular Poiseuille flow. The theoretical predictions on the form of density waves are in qualitative agreement with simulations in denser flows, however, there are discrepancies between simulation and theory in dilute flows.  相似文献   

18.
The paper reviews some peculiar properties exhibited by granular flows. We emphasize the inability of kinetic theory and of Bagnolds heuristic approach to describe the rapid regime of densely packed flows, characterized by the breakdown of the binary collision picture and by multibody long-lasting contacts. We suggest that deformation waves through the continuous paths of contacts can be effective to transport momentum and energy through the bulk, in a time very short compared to the inverse of the shear rate. This mechanism could explain some key rheological features encountered in dense granular materials.Received: 25 June 2004, Published online: 31 August 2004PACS: 45.70.-n Granular systemsJ. Rajchenbach: On leave from LMDH (CNRS-UMR 7603), Université P. et M. Curie, 75005 Paris, France.  相似文献   

19.
We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of noncohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard-particle limit, the rheology conforms to Bagnold scaling, where the shear stress is quadratic in the strain rate. As the particles are made softer, however, we find significant deviations from Bagnold rheology; the material flows more like a viscous fluid. We attribute this change in the collective rheology of the material to subtle changes in the contact lifetime distribution involving the increasing lifetime and number of the long-lived contacts in the softer particle systems.  相似文献   

20.
What mechanism governs slow flows of granular media? Microscopically, the grains experience enduring frictional contacts in these flows. However, a straightforward translation to a macroscopic frictional rheology, where the shear stresses are proportional to the normal stresses with a rate-independent friction coefficient, fails to capture important aspects of slow granular flows. There is now overwhelming evidence that agitations, tiny fluctuations of the grain positions, associated with large fluctuation of their contact forces, play a central role for slow granular flows. These agitations are generated in flowing regions, but travel deep inside the quiescent zones, and lead to a nonlocal rheology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号