首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An ordered molecular assembly of heteroleptic bis(phthalocyaninato) rare earth complexes M(Pc)[Pc(OC8H17)8] [M = Tb, Lu; H2Pc = phthalocyanine; H2Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] has been fabricated by the Langmuir-Blodgett (LB) technique and characterized by surface pressure-area isotherms, electronic absorption and polarized electronic absorption spectroscopy, low-angle X-ray diffraction, and atomic force microscopy. The molecular ordering in the LB multilayer film on SiO2 substrate was made into a p-channel field effect transistor (FET), which was generally operated in the enhanced mode. The energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as the energy band diagram can be deduced from the electrochemical measurement results. The charge mobilities of Tb(Pc)[Pc(OC8H17)8] and Lu(Pc)[Pc(OC8H17)8] were calculated to be about 6.4 x 10(-4) and 1.7 x 10(-3) cm2 V(-1) s(-1), respectively.  相似文献   

2.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

3.
The infra-red spectroscopic data for a series of 13 homoleptic substituted bis(phthalocyaninato) rare earth complexes with tervalent rare earths M(III)(TBPc)(2) [M=Y, Pr, ..., Lu except La, Ce and Pm; TBPc=dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)-phthalocyanine] have been collected with resolution of 2 cm(-1). Raman spectroscopic properties in the range of 500-1,800 cm(-1) for these double-deckers M(III)(TBPc)(2) have been collected using laser excitation sources emitting at 632.8 nm. Both the IR and Raman spectra for M(III)(TBPc)(2) are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds. For this series, the IR typical marker band of (TBPc)(-) appears as an intense absorption at 1,314-1,319 cm(-1), attributed to the pyrrole stretching. Under excitation at 632.8 nm that is in close resonance with the main Q absorption band of phthalocyanine ligand, typical Raman marker band of the monoanion radical (TBPc)(-) was observed at 1,515-1,530 cm(-1) resulting from aza CN stretching. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series.  相似文献   

4.
The Raman spectroscopic data in the range 500-1800 cm−1 for a series of 15 rare earth double-deckers with tervalent rare earths MIII[Pc(MeOPhO)8]2 (M = Y, La, …, Lu, except Ce, Pr and Pm), reduced state HPr[Pc(MeOPhO)8]2 and intermediate-valent cerium Ce[Pc(MeOPhO)8]2 have been collected using laser excitation source emitting at 632.8 nm. With excitation at 632.8 nm, which is in close resonance with the main Q absorption band of the phthalocyanine ligand, typical Raman marker bands of the monoanion radical [Pc(MeOPhO)8] were observed at 1500-1528 cm−1 as very strong bands resulting from the coupling of pyrrole CC and aza CN stretchings. For Ce[Pc(MeOPhO)8]2 and HPr[Pc(MeOPhO)8]2, a very strong band at 1499 cm−1 with contributions from both pyrrole CC and aza CN stretchings and also isoindole stretching was the marker Raman band of [Pc(MeOPhO)8]2−. In addition, the influence of ionic radius of the rare earth metal and substituent species on the Raman scatting characteristics of sandwich-type compounds has also been tentatively studied.  相似文献   

5.
The infrared (IR) spectroscopic data for a series of 15 rare earth double-deckers M[Pc(MeOPhO)(8)](2) [M=Y, La, ..., Lu, except Pm; H(2)Pc=2, 3, 9, 10, 16, 17, 23, 24-octakis(4-methoxyphenoxy)phthalocyanine] with tervalent rare earths M(III)[Pc(MeOPhO)(8)](2) (M=Y, La, ..., Lu except Ce and Pm) and intermediate-valent cerium Ce[Pc(MeOPhO)(8)](2) have been collected with resolution of 2cm(-1). For M(III)[Pc(MeOPhO)(8)](2), typical IR marker band of the monoradical anion Pc(MeOPhO)(8)(-) shows characteristic absorption band whose frequency linearly varies in the range from 1,313 cm(-1) as a weak band for La[Pc(MeOPhO)(8)](2) to 1,324 cm(-1) as a medium band for Lu[Pc(MeOPhO)(8)](2) along with the decrease of rare earth ionic size. For Ce[Pc(MeOPhO)(8)](2), a weak band at 1,324 cm(-1) with contribution from pyrrole stretching was the marker IR band of phthalocyanine dianion Pc(2-). In conclusion, all the metal size-dependent IR absorptions should be contributed primarily from the vibrations of pyrrole, isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

6.
Rare earth metal complexes based on novel linked bis(beta-diketiminato) ligands have been prepared via amine elimination and their structural characterisation revealed that the linker unit has significant influence on the geometry and coordination mode of the ancillary ligand.  相似文献   

7.
With the view to creating novel sandwich-type tetrapyrrole rare earth complexes toward potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)- and (S)-enantiomers [M(2)(Pc)(2)(TCBP)] {TCBP = Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phenyl] porphyrinate; M = Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H(2)TCBP with M(Pc)(2) in the presence of corresponding M(acac)(3)·nH(2)O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)- and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. This result reveals the effective chiral information transfer from the peripheral chiral binaphthyl units to the porphyrin and phthalocyanine chromophores in the triple-decker molecule because of the intense π-π interaction between porphyrin and phthalocyanine rings. In addition, their electrochemical properties have also been investigated by cyclic voltammetry (CV).  相似文献   

8.
Bian Y  Li L  Dou J  Cheng DY  Li R  Ma C  Ng DK  Kobayashi N  Jiang J 《Inorganic chemistry》2004,43(23):7539-7544
Three (1,8,15,22-tetrasubstituted phthalocyaninato)lead complexes Pb[Pc(alpha-OR)(4)] [H(2)Pc(alpha-OC(5)H(11))(4) = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(7)H(15))(4) = 1,8,15,22-tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(10)H(7))(4) = 1,8,15,22-tetrakis(2-naphthyloxy)phthalocyanine] (1-3) have been prepared as racemic mixtures by treating the corresponding metal-free phthalocyanines H(2)Pc(alpha-OR)(4) (4-6) with Pb(OAc)(2).3H(2)O in refluxing n-pentanol. The molecular structure of Pb[Pc(alpha-OC(5)H(11))(4)] (1) in the solid state has been determined by single-crystal X-ray diffraction analysis. This compound, having a nonplanar structure, crystallizes in the monoclinic system with a P2(1)/c space group. Each unit cell contains two pairs of enantiomeric molecules, which are linked by weak coordination of the Pb atom of one molecule with an aza nitrogen atom and its neighboring oxygen atom from the alkoxy substituent of another molecule, forming a pseudo-double-decker supramolecular structure in the crystals with a short ring-to-ring separation, 2.726 A, and thus a strong ring-ring pi-pi interaction. The decreased molecular symmetry for these complexes has also been revealed by the NMR spectra of 1 and 2. The methyl protons of the 3-pentyloxy and 2,4-dimethyl-3-pentyloxy side chains of 1 and 2, respectively, are chemically inequivalent. In addition to the elemental analysis and various spectroscopic characterizations, these compounds have also been electrochemically studied. Two one-electron oxidations and up to five one-electron reductions have been revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   

9.
The electronic absorption spectroscopic data for two series of 60 unsubstituted/substituted bis(phthalocyaninato) and mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth complexes M(Pc)2, M(Pc)2 and M(TClPP)(Pc) [M = Y, La…Lu except Pm; Pc = dianion of 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine [Pc(MeOPhO)8], dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)phthalocyanine (TBPc) and TClPP = tetra(4-chloro)phenylporphyrin] have been measured in CHCl3. In this paper, the influence of the symmetry of macrocycle rare earth molecules, the effects of ionic radius of the rare earth metal and the influence of substituent species (tert-butyl and 4-methoxyphenoxy groups) onto the peripheral benzene rings on the electronic absorption characteristics of sandwich-type compounds have also been tentatively studied in detail.  相似文献   

10.
Zhu P  Zhang X  Wang H  Zhang Y  Bian Y  Jiang J 《Inorganic chemistry》2012,51(10):5651-5659
A series of four mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes (Pc)M[Por(Fc)(2)] [Pc = phthalocyaninate; Por(Fc)(2) = 5,15-di(ferrocenyl)-porphyrinate; M = Eu (1), Y (2), Ho (3), Lu (4)] and their europium(III) triple-decker counterpart (Pc)Eu(Pc)Eu[Por(Fc)(2)] (5), each with two ferrocenyl units at the meso-positions of their porphyrin ligands, have been designed and prepared. The double- and triple-decker complexes 1-5 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of two double-deckers 1 and 4 were also determined by single-crystal X-ray diffraction analysis. Electrochemical studies of these novel sandwich complexes revealed two consecutive ferrocene-based one-electron oxidation waves, suggesting the effective electronic coupling between the two ferrocenyl units. Nevertheless, the separation between the two consecutive ferrocene-based oxidation waves increases from 1 to 4, along with the decrease of rare earth ionic radius, indicating the effect of rare earth size on tuning the coupling between the two ferrocenyl units. Furthermore, the splitting between the two ferrocene-based one-electron oxidations for triple-decker 5 is even smaller than that for 1, showing that the electronic interaction between the two ferrocene centers can also be tuned through changing the linking sandwich framework from double-decker to triple-decker. For further understanding of the electronic coupling between ferrocenyl groups, DFT calculation is carried out to clarify the electronic delocalization and the molecular orbital distribution in these double-decker complexes.  相似文献   

11.
Alkane elimination reaction between Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with one equivalent of the amidines with different steric demanding HL ([CyC(N-2,6-iPr2C6H3)2]H (HL1), [CyC(N-2,6-Me2C6H3)2]H (HL2), [PhC(N-2,6-Me2C6H3)2]H (HL3)) in THF afforded a series of mono(amidinate) rare earth metal bis(alkyl) complexes [CyC(N-2,6-iPr2C6H3)2]Ln(CH2SiMe3)2(THF) (Ln = Y (1), Lu (3)), [CyC(N-2,6-Me2C6H3)2]Ln(CH2SiMe3)2(THF)2 (Ln = Y (4), Lu (6)), and [PhC(N-2,6-Me2C6H3)2]Y(CH2SiMe3)2(THF)2 (7) in 75–89% isolated yields. For the early lanthanide metal Nd, THF slurry of NdCl3 was stirred with three equiv of LiCH2SiMe3 in THF, followed by addition of one equiv of the amidines HL1 or HL2 gave an “ate” complex [CyC(N-2,6-iPr2C6H3)2]Nd(CH2SiMe3)2(μ-Cl)Li(THF)3 (2) in 48% yield and a neutral [CyC(N-2,6-Me2C6H3)2]Nd(CH2SiMe3)2(THF)2 (5) in 52% yield, respectively. They were characterized by elemental analysis, FT-IR, NMR spectroscopy (except for 2 and 5 for their strong paramagnetic property). Complexes 2, 3, 4 and 5 were subjected to X-ray single crystal structure determination. These neutral mono(amidinate) rare earth metal bis(alkyl) complexes showed activity towards l-lactide polymerization to give high molecular weight and narrow molecular weight distribution polymers.  相似文献   

12.
Initial stages of two-dimensional crystal growth of the double-decker sandwich complex Lu(Pc*)2 [Pc* = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] have been studied by scanning tunneling microscopy at the liquid/solid interface between 1-phenyloctane and highly oriented pyrolytic graphite. High-resolution images strongly suggest alignment of the double-decker molecules into monolayers with the phthalocyanine rings parallel to the surface. Domains were observed with either hexagonal or quadrate packing motifs, and the growing interface of the layer was imaged. Molecular resolution was achieved, and the face of the phthalocyanine rings appeared as somewhat diffuse circular features. The alkyl chains are proposed to be interdigitating to maintain planar side-by-side packing.  相似文献   

13.
The infra-red (IR) spectroscopic data for a series of 45 homoleptic unsubstituted and substituted bis(phthalocyaninato) rare earth complexes M(Pc)2 and M(Pc*)2 [M=Y, La...Lu except Pm; H2Pc=phthalocyanine; H2Pc*=2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyanine (H2OOPc) and 2(3),9(10),16(17),24(25)-tetra(tert-butyl)phthalocyanine (H2TBPc)] have been collected with resolution of 2 cm(-1). The IR spectra for M(Pc)2 and M(OOPc)2 are much simpler than those of M(TBPc)2, revealing the relatively higher symmetry of the former two compounds. For M(Pc)2 the Pc-* marker band at 1312-1323 cm(-1), attributed to the pyrrole stretching, and the isoindole stretching band at 1439-1454 cm(-1) are found to be dependent on the central rare earth size, shifting slightly to the higher energy along with the decrease of rare earth radius. The frequency of the vibration at 876-887 cm(-1) is also dependent on the rare earth ionic size. The metal size-sensitivity of this band and theoretical studies render it possible to re-assign it to the coupling of isoindole deformation and aza vibration. The nature of another metal-sensitive vibration mode at 1110-1116 cm(-1), which was previously assigned to the C-H bending, is now re-assigned as an isoindole breathing mode with some small contribution also from C-H in-plane bending. These assignments are supported by comparative studies of the IR spectra of substituted bis(phthalocyaninato) analogues M(OOPc)2 and M(TBPc)2. By comparison between the IR spectra of unsubstituted and substituted bis(phthalocyaninato) rare earth analogues and according to the IR characteristics of alkyl groups, some characteristic vibrational fundamentals due to the Pc rings and the substituents can be separately identified. In conclusion, all the metal size-dependent IR absorptions are composed primarily of the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

14.
Homoleptic bis(phthalocyaninato) rare-earth double-deckers complexes [M(III)[Pc(alpha-OC5H11)4]2] (M = Eu, Y, Lu; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate) have been prepared by treating the metal-free phthalocyanine H2Pc(alpha-OC5H11)4 with the corresponding M(acac)3.nH2O (acac = acetylacetonate) in refluxing n-octanol. Due to the C4h symmetry of the Pc(alpha-OC5H11)4 ligand and the double-decker structure, all the reactions give a mixture of two stereoisomers with C4h and D4 symmetry. The former isomer, which is a major product, can be partially separated by recrystallization due to its higher crystallinity. The molecular structure of the major isomer of the Y analogue has been determined by single-crystal X-ray diffraction analysis. The metal center is eight-coordinate bound to the isoindole nitrogen atoms of the two phthalocyaninato ligands, forming a distorted square antiprism. Such an arrangement leads to an interesting pinwheel structure when viewed along the C4 axis, which assumes a very unusual S8 symmetry. The major isomers of all these double-deckers have also been characterized with a wide range of spectroscopic methods. A systematic investigation of their electronic absorption and electrochemical data reveals that the pi-pi interaction between the two Pc(alpha-OC5H11)4 rings is weaker than that for the corresponding unsubstituted or beta-substituted bis(phthalocyaninato) analogues.  相似文献   

15.
Wang R  Li Y  Li R  Cheng DY  Zhu P  Ng DK  Bao M  Cui X  Kobayashi N  Jiang J 《Inorganic chemistry》2005,44(6):2114-2120
A novel one-pot procedure starting from the corresponding M(acac)3 x nH2O, metal-free phthalocyanine H2Pc', and naphthalonitrile in the presence of DBU in n-octanol has been developed to prepare heteroleptic (naphthalocyaninato)(phthalocyaninato) rare earth double-decker complexes. A series of six sandwich compounds with different naphthalocyaninato ligands, phthalocyaninato ligands, and central rare earth metals, namely, Sm[Nc(tBu)4](Pc) [Nc(tBu)4 = 3(4),12(13),21(22),30(31)-tetra(tert-butyl)naphthalocyaninato; Pc = unsubstituted phthalocyaninato] (1), Sm(Nc)(Pc') [Pc' = Pc(OC5H11)4, Pc(OC8H17)8; Nc = 2,3-naphthalocyaninato; Pc(OC5H11)4 = 2(3),9(10),16(17),24(25)-tetrakis(3-pentyloxy)phthalocyaninato; Pc(OC8H17)8 = 2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyaninato] (2, 3), and M(Nc)[Pc(alpha-OC5H11)4] [M = Sm, Eu, Y; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] (4-6), have been isolated in good yields from this one-pot procedure demonstrating the generality of this synthetic pathway. In addition to spectroscopic analyses, the electrochemistry of these novel compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   

16.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

17.
Solid complexes of rare earth nitrates and picrates with a new aryl amide ligand 3.3'-bis(benzylamido)-2,2'-bipyridine (L) were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. The molecular structures of the complex [TbL(2)(NO(3))(3)H(2)O].2H(2)O have been determined by single-crystal X-ray diffraction. The fluorescent properties of the Eu(III) and Tb(III) nitrates and picrates complexes in solid state were also investigated in detail. Under the excitation, these complexes exhibited characteristic emissions of europium and terbium ions. It is worth noting that the nature of the anion has a great effect upon the composition of the complexes as well as emission properties of them.  相似文献   

18.
Li R  Ma P  Dong S  Zhang X  Chen Y  Li X  Jiang J 《Inorganic chemistry》2007,46(26):11397-11404
A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8}Eu[Pc(OCnH2n + 1)8] (n = 6, 8, 10,12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8} and metal-free 2,3,9,10,16,17,23,24-octakis(alkoxy)phthalocyanine H2Pc(OCnH2n + 1)8 (n = 6, 8, 10,12) in the presence of Eu(acac)3.H2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and have been electrochemically studied. With the help of the Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with an unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of the hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm2 V(-1) s(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.  相似文献   

19.
Substituted bis(phthalocyaninato) rare earth complexes ML2 (M = Y and Ce; L = [Pc(OC8H17)8]2, where Pc = phthalocyaninato) were adsorbed onto single crystalline Au(111) electrodes from benzene saturated with either YL2 or CeL2 complex at room temperature. In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to examine the structures and the redox reactions of these admolecules on Au(111) electrodes in 0.1 mol dm(-3) HClO4. The CVs obtained with YL2- and CeL2-coated Au(111) electrodes respectively contained two and three pairs of redox peaks between 0 and 1.0 V (versus reversible hydrogen electrode). STM molecular resolution revealed that YL2 and CeL2 admolecules were imaged as spherical protrusions separated by 2.3 nm, which suggests that they were oriented with their molecular planes parallel to the unreconstructed Au(111)-(1 x 1). Both molecules when adsorbing from approximately micromolar benzene dosing solutions produced mainly ordered arrays characterized as (8 x 5 radical3)rect (theta = 0.0125). The redox reactions occurring between 0.2 and 1.0 V caused no change in the adlayer, but they were desorbed or oxidized at the negative and positive potential limits. The processes of adsorption and desorption at the negative potentials were reversible to the modulation of potential. Electrochemical impedance spectroscopy (EIS) and CV measurements showed that YL2 and CeL2 adlayers could block the adsorption of perchlorate anions and mediating electron transfer at the Au(111) electrode, leading to the enhancement of charge transfer for the ferro/ferricyanide redox couple.  相似文献   

20.
LB films of three amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes with crown-ethers as hydrophilic heads and long alkyl chains as hydrophobic tails have been prepared and found to display very well ordered layer structures, as proved by pi-A isotherms, UV-vis and polarized absorption spectra, X-ray diffraction experiments, and microscopic morphology characterization. These LB films have been fabricated into field-effect transistor (FET) devices, which show carrier mobilities as high as 0.24-0.60 cm2 V-1 s-1, among the highest mobilities achieved thus far for all LB film-based OFETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号