首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neocortical dynamics evidently involves very complex, nonlinear processes including top-down and bottom-up interactions across spatial scales. The dynamics may also be strongly influenced by global (periodic) boundary conditions. The primary experimental measure of human neocortical dynamics at short time scales ( approximately few ms) is the scalp electroencephalogram (EEG). It is shown that different recording and data analysis strategies are sensitive to different parts of the spatial spectrum. Thus experimental measures of system dynamics (e.g., correlation dimension estimates) can generally be expected to depend on experimental method. These ideas are illustrated in two ways: a large scale, quasilinear theory of neocortical dynamics in which standing wave phenomenon occur with predicted frequencies in the general range of EEG, and a relatively simple nonlinear physical system consisting of a linear string with attached nonlinear springs. The string/springs system is integrated numerically to illustrate transitions from periodic to chaotic behavior as mesoscopic nonlinear influences dominate macroscopic linear effects. The implications of these results for new theories of neocortical dynamics, experimental estimates of dynamic properties, and cognitive EEG studies are considered.  相似文献   

2.
In this paper strong evidence is provided for significant far from equilibrium phase transition processes in the Earth’s magnetosphere as revealed by the nonlinear analysis of in situ observations. These results constitute the solid base for the solution of the durable controversy about the chaotic or non-chaotic character of the magnetospheric dynamics. During the last two decades the concept of low dimensional chaos was supported by theoretical and experimental methods by our group in Thrace and others scientists, as an explicative paradigm of the magnetospheric dynamics including substorm processes. In parallel, the concept of self-organized criticality (SOC) and space-time intermittency was introduced as new and opposing to low dimensional chaos concepts for modeling the magnetospheric dynamics. Novel results concerning the nonlinear analysis of in situ space plasma data (magnetic-electric field, energetic particles and bulk plasma flow time series) obtained by the Geotail spacecraft presented in this paper for the first time reveal the following: (a) Coexistence of SOC and chaos states in the magnetospheric system and global phase transition from one state to the other during substorms. (b) Strong intermittent turbulent character of the magnetospheric system at the SOC or the low dimensional chaos states. (c) Clear indications for non-extensivity and q-Gaussian statistics during periods of low dimensional and chaotic dynamics of the magnetosphere. (d) Low dimensional and nonlinear space plasma dynamics in the day side magnetopause and bow shock dynamics. The dual character of the magnetospheric dynamics including low dimensional chaotic (coherent) and high dimensional turbulent states, as supported in this paper, is in agreement and verifies previous theoretical and experimental studies.  相似文献   

3.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chaotic stripes as the nonlinear parameter is increased. The stripes represent intervals of initial conditions which generate chaotic trajectories and increase with the nonlinear parameter of the system. In the billiard case, the initial conditions are the injection angles. For higher-dimensional systems and small nonlinearities, the chaotic stripes are the initial condition inside which Arnold diffusion occurs.  相似文献   

4.
In this paper we develop an improved surrogate data test to show experimental evidence, for all the simple vowels of U.S. English, for both male and female speakers, that Gaussian linear prediction analysis, a ubiquitous technique in current speech technologies, cannot be used to extract all the dynamical structure of real speech time series. The test provides robust evidence undermining the validity of these linear techniques, supporting the assumptions of either dynamical nonlinearity and/or non-Gaussianity common to more recent, complex, efforts at dynamical modeling speech time series. However, an additional finding is that the classical assumptions cannot be ruled out entirely, and plausible evidence is given to explain the success of the linear Gaussian theory as a weak approximation to the true, nonlinear/non-Gaussian dynamics. This supports the use of appropriate hybrid linear/nonlinear/non-Gaussian modeling. With a calibrated calculation of statistic and particular choice of experimental protocol, some of the known systematic problems of the method of surrogate data testing are circumvented to obtain results to support the conclusions to a high level of significance.  相似文献   

5.
We study the nonlinear dynamics of two-component Bose-Einstein condensates in one-dimensional periodic optical lattice potentials. The stationary state perturbation solutions of the coupled two-component nonlinear Schr(o)dinger/Gross-Pitaevskii equations are constructed by using the direct perturbation method. Theoretical analysis revels that the perturbation solution is the chaotic one, which indicates the existence of chaos and chaotic region in parameter space. The corresponding numerical calculation results agree well with the analytical results. By applying the chaotic perturbation solution, we demonstrate the atomic spatial population and the energy distribution of the system are chaotic generally.  相似文献   

6.
The dynamics of an optical phase locked loop (OPLL) with first order loop filter having inherent loop time delay is investigated. In the presence of delay, the system is modeled as a third order autonomous system. In the out of lock condition or during the process of locking, the dynamics of the system is highly nonlinear and different nonlinear phenomena, like limit cycle oscillation, period doubling, chaotic oscillations etc., may be observed with the variation of design parameters. Applying the techniques of the nonlinear dynamics, we have calculated the effects of the inherent loop time delay in determining the state of the loop. The analytical results predicting the parameter values for stable and unstable region of operation are obtained using the quasi-linear Routh–Hurwitz method. The parameter range required for the onset of chaotic oscillations is estimated by Melnikov's global perturbation method. The predicted results are in agreement with those obtained by numerical integration of system equations.  相似文献   

7.
刘文波  邓榤生  陈关荣 《中国物理 B》2011,20(9):90510-090510
A simple three-dimensional (3D) autonomous chaotic system is extended to four-dimensions so as to generate richer nonlinear dynamics. The new system not only inherits the dynamical characteristics of its parental 3D system but also exhibits many new and complex dynamics, including assembled 1-scroll, 2-scroll and 4-scroll attractors, as well as hyperchaotic attractors, by simply tuning a single system parameter. Lyapunov exponents and bifurcation diagrams are obtained via numerical simulations to further justify the existences of chaos and hyperchaos. Finally, an electronic circuit is constructed to implement the system, with experimental and simulation results presented and compared for demonstration and verification.  相似文献   

8.
The classical deterministic dynamics of a Brownian particle with a time-dependent periodic perturbation in a spatially periodic potential is investigated. We have constructed a perturbed chaotic solution near the heteroclinic orbit of the nonlinear dynamics system by using the Constant-Variation method. Theoretical analysis and numerical result show that the motion of the Brownian particle is a kind of chaotic motion. The corresponding chaotic region in parameter space is obtained analytically and numerically.  相似文献   

9.
The classical deterministic dynamics of a Brownian particle with a time-dependent periodic perturbation in a spatially periodic potential is investigated. We have constructed a perturbed chaotic solution near the heteroclinic orbit of the nonlinear dynamics system by using the Constant-Variation method. Theoretical analysis and numerical result show that the motion of the Brownian particle is a kind of chaotic motion. The corresponding chaotic region in parameter space is obtained analytically and numerically.  相似文献   

10.
Linear filter may hide simple nonlinearity of chaotic dynamics, which would decrease the accuracy of parameter estimation, and reduce the effect of signal processing. Based on theoretical and experimental analysis, this paper provides a method to recover the dynamics. An example of radar data proves that the dynamics hidden in observed data can be found by inverse filter of chaos. It is also pointed out that inverse filter of chaos can be applied to mine inner regulation of some time series and estimate parameters of nonlinear models in data processing for radar. And the method is significant to clutter modeling.  相似文献   

11.
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s−1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.  相似文献   

12.
We study the nonlinear dynamics of two-component Bose-Einstein condensates in one-dimensional periodic optical lattice potentials. The stationary state perturbation solutions of the coupled two-component nonlinear Schrödinger/Gross-Pitaevskii equations are constructed by using the direct perturbation method. Theoretical analysis revels that the perturbation solution is the chaotic one, which indicates the existence of chaos and chaotic region in parameter space. The corresponding numerical calculation results agree well with the analytical results. By applying the chaotic perturbation solution, we demonstrate the atomic spatial population and the energy distribution of the system are chaotic generally.  相似文献   

13.
StefanEriksson   《Optics Communications》2002,210(3-6):343-353
An experimental study of the dynamical properties of a semiconductor laser subjected to external optical injection is presented. The effect of the laser current on the dynamical regions as found in an experiment is reported on for the first time. The nonlinear dynamical regions are mapped in the parameter plane consisting of the detuning between lasers and the injection strength, by utilizing a method of condensing the information in output spectra to two-dimensional images. Corresponding maps for different values of the slave laser current are recorded. The recordings present conclusive experimental evidence that the overall locations of the dynamical regions scale with respect to the relaxation–oscillation frequency and the injection strength relative to the free running laser power. The results further support the theoretical prediction that the linewidth-enhancement factor is the parameter which most strongly affects the dynamics. Locally, specific chaotic regions are found to grow for higher operating points of the slave laser. A complete characterization of the parameters that enter the rate-equations for the visible output AlGaInP laser used in this experiment is performed.  相似文献   

14.
In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlinear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester(MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifurcations such as period doubling bifurcation(PDB), saddle node bifurcation(SNB), Hopf bifurcation(HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are illustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.  相似文献   

15.
Through adding a nonlinear self-feedback term in the evolution equations of nerual network,we introduced a transiently chaotic neural network model.In order to utilize the transiently chaotic dynamics mechanism in optimization problem efficiently,we have analyzed the dynamical pocedure of the transiently chaotic neural network model and studied the function of the crucial bifurcation parameter which governs the chaotic behavior of the system.Based on the dynamical analysis of the transiently chaotic neural network model,Chaotic annealing algorithm is also examined and improved.As an example,we applied chaotic annealing method to the traveling salesman problem and obtained good results.  相似文献   

16.
本文在实验教学中引入一种非线性混沌摆系统,通过调节混沌摆的驱动力周期演示了该非线性动力学系统出现混沌现象的过程,从而让学生了解混沌现象的参数敏感性、相图特点、频谱特性等基本特性.为了进一步了解该混沌摆的特性,本文建立了该非线性摆系统的简化动力学方程,在数值上对其进行了研究.基于动力学方程的数值模拟,克服了实验上相关参数定量改变困难、摆动稳定性不易控制、实验时间周期长等问题.在数值模拟中,通过改变不同参数得到了相图、频谱图以及分岔图,比较深入详细地对这种混沌摆的相关特性进行了描述,也有利于学生加深对混沌摆的理解.  相似文献   

17.
A two parameter mathematical model for a periodically forced nonlinear oscillator is analyzed using analytical and numerical techniques. The model displays phase locking, quasiperiodic dynamics, bistability, period-doubling bifurcations and chaotic dynamics. The regions in which the different dynamical behaviors occur as a function of the two parameters is considered.  相似文献   

18.
We study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment or a common medium. We observed that this form of indirect coupling leads to synchronization and phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with examples of Landau-Stuart and Ro?ssler oscillators. The dynamical transitions are characterized using various indices such as average phase difference, frequency, and Lyapunov exponents. Experimental evidence of the phase-flip transition is shown using an electronic version of the van der Pol oscillators.  相似文献   

19.
We study the stochastic processes of markovization and demarkovization in chaotic signals of human electroencephalograms (EEGs) during epilepsy using various measures of demarkovization and markovization, namely, the statistical spectrum of a non-Markovity parameter, power spectra of the time correlation function and memory functions of junior orders, and local relaxation and kinetic parameters. The results demonstrate the superiority of the new measures in comparison to the traditional nonlinear measures. We conclude that the applied measures are more appropriate for the quantification of markovization and demarkovization in EEG data and the prediction of epilepsy seizure.  相似文献   

20.
王斌  薛建议  贺好艳  朱德兰 《物理学报》2014,63(21):210502-210502
在对已有的混沌系统分析和研究的基础上,将一个二次混沌系统第三个方程关于x的线性项引入到第二个方程中,通过对该系统第二个等式中的线性项x作绝对值运算,提出了一类新的二次非线性系统.采用非线性动力学方法分析了系统参数变化时所经历的稳定、准周期、混沌的过渡过程,模拟电路实验结果与Matlab数值仿真结果相一致.分析发现混沌态时绝对值运算后的系统比原系统的Lyapunov指数更大,并可将原系统的混沌吸引子由两个翼的拓扑结构变为四翼的拓扑结构,从而实现羽翼倍增.针对该混沌特性更强的羽翼倍增混沌系统,基于Takagi-Sugeno(T-S)模糊模型和线性矩阵不等式(LMI),设计出使该羽翼倍增混沌系统渐近稳定的鲁棒模糊控制器.仿真结果证实了所提出定理和设计控制器的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号