首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an isolated measurement process, we calculate the effect measurement has on entropy for the multi-cylinder Szilard engine. We find that the system of cylinders possesses an entropy associated with cylinder total energy states, and that it records information transferred at measurement. Contrary to other's results, we find that the apparatus loses entropy due to measurement. The Second Law of Thermodynamics may be preserved if Maxwell's demon gains entropy moving the engine partition.  相似文献   

2.
We present an analysis of Szilard's one-molecule Maxwell's demon, including a detailed entropy accounting, that suggests a general theory of the entropy cost of information. It is shown that the entropy of the demon increases during the expansion step, due to the decoupling of the molecule from the measurement information. It is also shown that there is an entropy symmetry between the measurement and erasure steps, whereby the two steps additivelv share a constant entropy change, but the proportion that occurs during each of the two steps is arbitrary. Therefore the measurement step may be accompanied by an entropy increase, a decrease, or no change at all, and likewise for the erasure step. Generalizing beyond the demon, decorrelation between a physical system and information about that system always causes an entropy increase in the joint system comprised of both the original system and the information. Decorrelation causes a net entropy increase in the universe unless, as in the Szilard demon, the information is used to decrease entropy elsewhere before the correlation is lost. Thus, information is thermodynamically costly precisely to the extent that it is not used to obtain work from the measured system.  相似文献   

3.
A reinvention of the classical Maxwel demon was proposed by Szilard around the time quantum mechanics was developed. His model continues to attract great interest, especially quantum versions of it. A quantum formulation of the Szilard engine is introduced and investigated here. It is made to operate through specified cycles in such a way that all thermodynamic quantities which pertain to the system can be evaluated exactly in closed form along each sequence of steps through a cycle. It is shown that as a result of the structure of the model, it is possible to calculate and compare various thermodynamic quantities as the engine proceeds around a well defined specific cycle.  相似文献   

4.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

5.
Yan-Wei Dai 《中国物理 B》2022,31(7):70502-070502
We investigate quantum phase transitions for q-state quantum Potts models (q=2,3,4) on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with a simplified updating scheme. We extend the universal order parameter to a two-dimensional lattice system, which allows us to explore quantum phase transitions with symmetry-broken order for any translation-invariant quantum lattice system of the symmetry group G. The universal order parameter is zero in the symmetric phase, and it ranges from zero to unity in the symmetry-broken phase. The ground-state fidelity per lattice site is computed, and a pinch point is identified on the fidelity surface near the critical point. The results offer another example highlighting the connection between (i) critical points for a quantum many-body system undergoing a quantum phase-transition and (ii) pinch points on a fidelity surface. In addition, we discuss three quantum coherence measures: the quantum Jensen-Shannon divergence, the relative entropy of coherence, and the l1 norm of coherence, which are singular at the critical point, thereby identifying quantum phase transitions.  相似文献   

6.
《Comptes Rendus Physique》2016,17(10):1130-1138
We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.  相似文献   

7.
We analyse the competition between spin glass (SG) order and local pairing superconductivity (SC) in the fermionic Ising spin glass with frustrated fermionic spin interaction and nonrandom attractive interaction. The phase diagram is presented for all temperatures T and chemical potentials μ. SC-SG transitions are derived for the relevant ratios between attractive and frustrated-magnetic interaction. Characteristic features of pairbreaking caused by random magnetic interaction and/or by spin glass proximity are found. The existence of low-energy excitations, arising from replica permutation symmetry breaking (RPSB) in the Quantum Parisi Phase, is shown to be relevant for the SC-SG phase boundary. Complete 1-step RPSB-calculations for the SG-phase are presented together with a few results for -step breaking. Suppression of reentrant SG-SC-SG transitions due to RPSB is found and discussed in context of ferromagnet-SG boundaries. The relative positioning of the SC and SG phases presents a theoretical landmark for comparison with experiments in heavy fermion systems and high superconductors. We find a crossover line traversing the SG-phase with as its quantum critical (end)point in complete RPSB, and scaling is proposed for its vicinity. We argue that this line indicates a random field instability and suggest Dotsenko-Mézard vector replica symmetry breaking to occur at low temperatures beyond. Received 26 November 1998 and Received in final form 25 January 1999  相似文献   

8.
Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.  相似文献   

9.
We analyse the statistical entropy of two-dimensional lattice-gas models in terms of the contributions which arise from space correlations of increasing order. The “residual multiparticle entropy”, defined as the contribution to the excess entropy that is associated with correlations involving more than two particles, is calculated for the Ising and Coulomb lattice gases. The thermodynamic behaviour of the residual multiparticle entropy is then discussed in relation to the phase diagram of the model and the existence of underlying signatures of order-disorder phase transitions is also investigated. Received 31 December 1998 and Received in final form 8 March 1999  相似文献   

10.
We study the quenched complexity in spin-glass mean-field models satisfying the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study, consistent with recent numerical results, allows, in principle, to conjecture the absence of any supersymmetric contribution to the complexity in the Sherrington-Kirkpatrick model. The same analysis can be applied to any model with a full replica symmetry breaking phase, e.g., the Ising p-spin model below the Gardner temperature. The existence of different solutions, breaking the supersymmetry, is also discussed.  相似文献   

11.
Symmetry breaking plays a pivotal role in modern physics.Although self-similarity is also a symmetry,and appears ubiquitously in nature,a fundamental question arises as to whether self-similarity breaking makes sense or not.Here,by identifying an important type of critical fluctuation,dubbed‘phases fluctuations’,and comparing the numerical results for those with self-similarity and those lacking self-similarity with respect to phases fluctuations,we show that self-similarity can indeed be broken,with significant consequences,at least in nonequilibrium situations.We find that the breaking of self-similarity results in new critical exponents,giving rise to a violation of the well-known finite-size scaling,or the less well-known finite-time scaling,and different leading exponents in either the ordered or the disordered phases of the paradigmatic Ising model on two-or three-dimensional finite lattices,when subject to the simplest nonequilibrium driving of linear heating or cooling through its critical point.This is in stark contrast to identical exponents and different amplitudes in usual critical phenomena.Our results demonstrate how surprising driven nonequilibrium critical phenomena can be.The application of this theory to other classical and quantum phase transitions is also anticipated.  相似文献   

12.
We present the full phase diagram of the spherical 2 + p spin-glass model with p > or = 4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions.  相似文献   

13.
In this Letter we address the nature of broken ergodicity in the low temperature phase of Ising spin glasses by examining spectral properties of spin correlation functions C(ij) identical with. We argue that more than one extensive [i.e., O(N)] eigenvalue in this matrix signals replica symmetry breaking. Monte Carlo simulations of the infinite-range Ising spin-glass model, above and below the Almeida-Thouless line, support this conclusion. Exchange Monte Carlo simulations for the short-range model in four dimensions find a single extensive eigenvalue and a large subdominant eigenvalue consistent with droplet model expectations.  相似文献   

14.
According to our scheme to construct quantum phase transitions (QPTs) in spin chain systems with matrix product ground states, we first successfully combine matrix product state (MPS) QPTs with spontaneous symmetry breaking. For a concrete model, we take into account a kind of MPS QPTs accompanied by spontaneous parity breaking, though for either side of the critical point the GS is typically unique, and show that the kind of MPS QPTs occur only in the thermodynamic limit and are accompanied by the appearance of singularities, diverging correlation length, vanishing energy gap and the entanglement entropy of a half-infinite chain not only staying finite but also whose first derivative discontinuous.  相似文献   

15.
The Szilard engine (SZE) is the quintessence of Maxwell's demon, which can extract the work from a heat bath by utilizing information. We present the first complete quantum analysis of the SZE, and derive an analytic expression of the quantum-mechanical work performed by a quantum SZE containing an arbitrary number of molecules, where it is crucial to regard the process of insertion or removal of a wall as a legitimate thermodynamic process. We find that more (less) work can be extracted from the bosonic (fermionic) SZE due to the indistinguishability of identical particles.  相似文献   

16.
李静辉  黄祖洽 《中国物理》1997,6(5):341-347
We report a new model for infinite interacting noise driven subsystems which are coupled by a mean field and study its nonequilibrium phase transitions. In this model, under some circumstances the phase transition is between the state with zero mean field and the state with non zero mean field, and has a breaking of symmetry, which is similar to that reported by Van den Broeck, Parrondo, Toral, and Armcro [Phys. Rev. Lett.,73(1994),3395; Phys. Rev., E49(1994),2639], by Pikovsky, Rateitschak, and Kurths [Z.Phys.,B95(1994),541], and by other authors. We style this nonequi librium phase transition the symmetry breaking mean field. However, under other circumstances, the nonequilibrium phase transition of our model is not of the symme try breaking mean field type, which is a new phenomenon that has not been reported before.  相似文献   

17.
Here, we propose an extension of the diabatic approach to photo-induced phase transitions and suggest three states model, which mimics a system with three local diabatic states or equivalently two states where one of them is unstable against a nonsymmetric distortion. The model allows to discuss symmetry breaking transformations and is intended to describe photo-induced transformations in molecular systems, where a path of structural relaxation involves two coordinates. The three states are mapped into a minimum version of Ising spin-1 model, which exhibits metastability. Conditions for switching between stable and metastable phases are discussed in terms of a competition between crystal field, changed by illumination, and dipolar coupling. Examples are neutral (N) to ionic (I) transformation in mixed-stack charge-transfer system and low-temperature photo-induced spin-crossover transformation in metal complexes.  相似文献   

18.
陈西浩  王秀娟 《物理学报》2018,67(19):190301-190301
应用矩阵乘积态表示的无限虚时间演化块算法,研究了扩展的量子罗盘模型.为了深入研究该模型的长程拓扑序和量子相变,基于奇数键和偶数键,引入了奇数弦关联和偶数弦关联,计算了保真度、奇数弦关联、偶数弦关联、奇数弦关联饱和性与序参量.弦关联表现出三种截然不同的行为:衰减为零、单调饱和与振荡饱和.基于弦关联的以上特征,给出了量子罗盘模型的基态序参量相图.在临界区,局域磁化强度和单调奇弦序参量的临界指数β=1/8表明:相变的普适类是Ising类型.此外,保真度探测到的相变点、连续性与非连续性和序参量的结果一致.  相似文献   

19.
Symmetry breaking can be induced in a number of ways including interactions with a solvent. An example is the triiodide ion which is centrosymmetric in the gas phase. Molecular dynamics simulations of the triiodide ion in solution have been used to investigate the extent of symmetry breaking in a variety of solvents. We find that the triiodide ion loses its symmetry in water, ethanol, and methanol which form hydrogen bonds with the ion. This results in a localization of charge at one end of the ion and breaking of the geometric symmetry. The extent of symmetry breaking increases as the temperature is lowered. Correlation times for interconversion are reported and the energetics of symmetry breaking are presented. Analogies are made with second-order phase transitions.  相似文献   

20.
We study the phase diagram of a two-dimensional random tiling model for quasicrystals. At proper concentrations the model has 8-fold rotational symmetry. Landau theory correctly gives most of the qualitative features of the phase diagram, which is in turn studied in detail numerically using a transfer matrix approach. We find that the system can enter the quasicrystal phase from many other crystalline and incommensurate phases through first-order or continuous transitions. Exact solutions are given in all phases except for the quasicrystal phase, and for the phase boundaries between them. We calculate numerically the phason elastic constants and entropy density, and confirm that the entropy density reaches its maximum at the point where phason strains are zero and the system possesses 8-fold rotational symmetry. In addition to the obvious application to quasicrystals, this study generalizes certain surface roughening models to two-dimensional surfaces in four dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号