首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.  相似文献   

2.
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field (SCF) theories is presented and illustrated with applications to molecules consisting of more than 1000 atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a minimization of the Roothaan-Hall (RH) energy function and solving the Newton equations using the preconditioned conjugate-gradient (PCG) method. For rapid PCG convergence, the Lowdin orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall (LS-TRRH) method works by the introduction of a level-shift parameter in the RH Newton equations. A great advantage of the LS-TRRH method is that the optimal level shift can be determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the level-shifted Newton equations. For density averaging, the authors use the trust-region density-subspace minimization (TRDSM) method, which, unlike the traditional direct inversion in the iterative subspace (DIIS) scheme, is firmly based on the principle of energy minimization. When combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix (including a boxed fitting of the electron density), LS-TRRH and TRDSM methods constitute the linear-scaling trust-region SCF (LS-TRSCF) method. The LS-TRSCF method compares favorably with the traditional SCF/DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges to a saddle point.  相似文献   

3.
An efficient method for removing the self-consistent field (SCF) diagonalization bottleneck is proposed for systems of weakly interacting components. The method is based on the equations of the locally projected SCF for molecular interactions (SCF MI) which utilize absolutely localized nonorthogonal molecular orbitals expanded in local subsets of the atomic basis set. A generalization of direct inversion in the iterative subspace for nonorthogonal molecular orbitals is formulated to increase the rate of convergence of the SCF MI equations. Single Roothaan step perturbative corrections are developed to improve the accuracy of the SCF MI energies. The resulting energies closely reproduce the conventional SCF energy. Extensive test calculations are performed on water clusters up to several hundred molecules. Compared to conventional SCF, speedups of the order of (N/O)2 have been achieved for the diagonalization step, where N is the size of the atomic orbital basis, and O is the number of occupied molecular orbitals.  相似文献   

4.
A new formulation of the diagonalization step in self-consistent-field (SCF) electronic structure calculations is presented. It exactly replaces the diagonalization of the effective Hamiltonian with the solution of a set of second order nonlinear equations. The density matrix and/or the new set of occupied orbitals can be directly obtained from the resulting solution. This formulation may offer interesting possibilities for new approaches to efficient SCF calculations. The working equations can be derived either from energy minimization with respect to a Cayley-type parametrization of a unitary matrix, or from a similarity transformation approach.  相似文献   

5.
KSSOLV (Kohn-Sham Solver) is a MATLAB (Matrix Laboratory) toolbox for solving the Kohn-Sham density functional theory (KS-DFT) with the plane-wave basis set. In the KS-DFT calculations, the most expensive part is commonly the diagonalization of Kohn-Sham Hamiltonian in the self-consistent field (SCF) scheme. To enable a personal computer to perform medium-sized KS-DFT calculations that contain hundreds of atoms, we present a hybrid CPU-GPU implementation to accelerate the iterative diagonalization algorithms implemented in KSSOLV by using the MATLAB built-in Parallel Computing Toolbox. We compare the performance of KSSOLV-GPU on three types of GPU, including RTX3090, V100, and A100, with conventional CPU implementation of KSSOLV respectively and numerical results demonstrate that hybrid CPU-GPU implementation can achieve a speedup of about 10 times compared with sequential CPU calculations for bulk silicon systems containing up to 128 atoms.  相似文献   

6.
We introduce a new implementation of time-dependent density-functional theory which allows the entire spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a single standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a superoperator formulation of linearized time-dependent density-functional theory, we first represent the dynamical polarizability of an interacting-electron system as an off-diagonal matrix element of the resolvent of the Liouvillian superoperator. One-electron operators and density matrices are treated using a representation borrowed from time-independent density-functional perturbation theory, which permits us to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is evaluated through a newly developed algorithm based on the nonsymmetric Lanczos method. Each step of the Lanczos recursion essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian. Suitable extrapolation of the Lanczos coefficients allows for a dramatic reduction of the number of Lanczos steps necessary to obtain well converged spectra, bringing such number down to hundreds (or a few thousands, at worst) in typical plane-wave pseudopotential applications. The resulting numerical workload is only a few times larger than that needed by a ground-state Kohn-Sham calculation for a same system. Our method is demonstrated with the calculation of the spectra of benzene, C(60) fullerene, and of chlorophyll a.  相似文献   

7.
《Chemical physics》1986,104(2):229-250
A general purpose MC SCF program with a direct, fully second-order and step-restricted algorithm is presented. The direct character refers to the solution of an MC SCF eigenvalue equation by means of successive linear transformations where the norm-extended hessian matrix is multiplied onto a trial vector without explicitly constructing the hessian. This allows for applications to large wavefunctions. In the iterative solution of the eigenvalue equation a norm-extended optimization algorithm is utilized in which the number of negative eigenvalues of the hessian is monitored. The step control is based on the trust region concept and is accomplished by means of a simple modification of the Davidson—Liu simultaneous expansion method for iterative calculation of an eigenvector. Convergence to the lowest state of a symmetry is thereby guaranteed, and test calculations also show reliable convergence for excited states. We outline the theory and describe in detail an efficient implementation, illustrated with sample calculations.  相似文献   

8.
Different self-consistent field (SCF) iteration schemes for open-shell systems are discussed. After a brief summary of the well-known level shifting and damping procedure, we describe the quadratically convergent SCF (QCSCF) approach based on the gradient and the Hessian matrix in a space of orbital rotation parameters. An analytical expression for the latter is derived for the general many-shell case. Starting from the expression for the energy change obtained by the QCSCF method, we then present a simplified direct procedure avoiding matrix diagonalization but also the difficulties of the QCSCF method in handling the Hessian matrix. Numerical calculations on some open-shell systems involving transition-metal complexes show that this method leads to rapid and reliable convergence of the iteration process in cases where the usual SCF procedure of iterative diagonalization tends to diverge. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 617–637, 1997  相似文献   

9.
The divide-and-conquer (DC) method, which is one of the linear-scaling methods avoiding explicit diagonalization of the Fock matrix, has been applied mainly to pure density functional theory (DFT) or semiempirical molecular orbital calculations so far. The present study applies the DC method to such calculations including the Hartree-Fock (HF) exchange terms as the HF and hybrid HF/DFT. Reliability of the DC-HF and DC-hybrid HF/DFT is found to be strongly dependent on the cut-off radius, which defines the localization region in the DC formalism. This dependence on the cut-off radius is assessed from various points of view: that is, total energy, energy components, local energies, and density of states. Additionally, to accelerate the self-consistent field convergence in DC calculations, a new convergence technique is proposed.  相似文献   

10.
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography.  相似文献   

11.
12.
A density matrix based time-dependent density functional theory is extended in the present work. Chebyshev expansion is introduced to propagate the linear response of the reduced single-electron density matrix upon the application of a time-domain delta-type external potential. The Chebyshev expansion method is more efficient and accurate than the previous fourth-order Runge-Kutta method and removes a numerical divergence problem. The discrete Fourier transformation and filter diagonalization of the first-order dipole moment are implemented to determine the excited state energies. It is found that the filter diagonalization leads to highly accurate values for the excited state energies. Finally, the density matrix based time-dependent density functional is generalized to calculate the energies of singlet-triplet excitations.  相似文献   

13.
We present new developments on a density-based embedding strategy for the electronic structure of localized feature in periodic, metallic systems [see T. Kluner et al., J. Chem. Phys. 116, 42 (2002), and references therein]. The total system is decomposed into an embedded cluster and a background, where the background density is regarded as fixed. Its effect on the embedded cluster is modeled as a one-electron potential derived from density functional theory. We first discuss details on the evaluation of the various contributions to the embedding potential and provide a strategy to incorporate the use of ultrasoft pseudopotentials in a consistent fashion. The embedding potential is obtained self-consistently with respect to both the total and embedded cluster densities in the embedding region, within the framework of a frozen background density. A strategy for accomplishing this self-consistency in a numerically stable manner is presented. Finally, we demonstrate how dynamical correlation effects can be treated within this embedding framework via the multireference singles and doubles configuration interaction method. Two applications of the embedding theory are presented. The first example considers a Cu dimer embedded in the (111) surface of Cu, where we explore the effects of different models for the kinetic energy potential. We find that the embedded Cu density is reasonably well-described using simple models for the kinetic energy. The second, more challenging example involves the adsorption of Co on the (111) surface of Cu, which has been probed experimentally with scanning tunneling microscopy [H. C. Manoharan et al., Nature (London) 403, 512 (2000)]. In contrast to Kohn-Sham density functional theory, our embedding approach predicts the correct spin-compensated ground state.  相似文献   

14.
The correlation energy in density functional theory can be expressed exactly in terms of the change in the probability of finding two electrons at a given distance r(12) (intracule density) when the electron-electron interaction is multiplied by a real parameter lambda varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is (ideally) kept fixed by a suitable local one-body potential. While an accurate intracule density of the physical system can only be obtained from expensive wavefunction-based calculations, being able to construct good models starting from Kohn-Sham ingredients would highly improve the accuracy of density functional calculations. To this purpose, we investigate the intracule density in the lambda --> infinity limit of the adiabatic connection. This strong-interaction limit of density functional theory turns out to be, like the opposite non-interacting Kohn-Sham limit, mathematically simple and can be entirely constructed from the knowledge of the one-electron density. We develop here the theoretical framework and, using accurate correlated one-electron densities, we calculate the intracule densities in the strong interaction limit for few atoms. Comparison of our results with the corresponding Kohn-Sham and physical quantities provides useful hints for building approximate intracule densities along the adiabatic connection of density functional theory.  相似文献   

15.
An extension of density functional theory is proposed for degenerate states. There are suitably selected basic variables beyond the subspace density. Generalized Kohn-Sham equations are derived. A direct method is proposed to ensure the fixed value of ensemble quantities. Then the Kohn-Sham equations are similar to the conventional Kohn-Sham equations. But the Kohn-Sham potential is different for different ensembles. A simple local expression is proposed for the correlation energy.  相似文献   

16.
Second-order perturbation theory based on the Kohn-Sham Hamiltonian leads to an implicit density functional for the correlation energy E(c) (MP2), which is explicitly dependent on both occupied and unoccupied Kohn-Sham single-particle orbitals and energies. The corresponding correlation potential v(c) (MP2), which has to be evaluated by the optimized potential method, was found to be divergent in the asymptotic region of atoms, if positive-energy continuum states are included in the calculation [Facco Bonetti et al., Phys. Rev. Lett. 86, 2241 (2001)]. On the other hand, Niquet et al., [J. Chem. Phys. 118, 9504 (2003)] showed that v(c) (MP2) has the same asymptotic -alpha(2r(4)) behavior as the exact correlation potential, if the system under study has a discrete spectrum only. In this work we study v(c) (MP2) for atoms in a spherical cavity within a basis-set-free finite differences approach, ensuring a completely discrete spectrum by requiring hard-wall boundary conditions at the cavity radius. Choosing this radius sufficiently large, one can devise a numerical continuation procedure which allows to normalize v(c) (MP2) consistent with the standard choice v(c)(r-->infinity)=0 for free atoms, without modifying the potential in the chemically relevant region. An important prerequisite for the success of this scheme is the inclusion of very high-energy virtual states. Using this technique, we have calculated v(c) (MP2) for all closed-shell and spherical open-shell atoms up to argon. One finds that v(c) (MP2) reproduces the shell structure of the exact correlation potential very well but consistently overestimates the corresponding shell oscillations. In the case of spin-polarized atoms one observes a strong interrelation between the correlation potentials of the two spin channels, which is completely absent for standard density functionals. However, our results also demonstrate that E(c) (MP2) can only serve as a first step towards the construction of a suitable implicit correlation functional: The fundamental variational instability of this functional is recovered for beryllium, for which a breakdown of the self-consistent Kohn-Sham iteration is observed. Moreover, even for those atoms for which the self-consistent iteration is stable, the results indicate that the inclusion of v(c) (MP2) in the total Kohn-Sham potential does not lead to an improvement compared to the complete neglect of the correlation potential.  相似文献   

17.
A new strategy to solve the Kohn-Sham equations of density functional theory is presented which avoids diagonalization within a finite basis-set expansion. The implementation is based on an expansion of orbitals in terms of Gaussian functions and it is shown that the algorithm is competitive with more conventional approaches. The new approach is based on conjugated gradients optimization augmented by an approximate second-order update together with convergence acceleration. Computational advantages of the new algorithm are discussed under the special aspect of parallel computing. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Calculating excited-state potential-energy surfaces for systems with a large number of close-lying excited states requires the identification of the relevant electronic transitions for several geometric structures. Time-dependent density functional theory (TDDFT) is very efficient in such calculations, but the assignment of local excited states of the active molecule can be difficult. We compare the results of the frozen-density embedding (FDE) method with those of standard Kohn-Sham density-functional theory (KS-DFT) and simpler QM/MM-type methods. The FDE results are found to be more accurate for the geometry dependence of excitation energies than classical models. We also discuss how selective iterative diagonalization schemes can be exploited to directly target specific excitations for different structures. Problems due to strongly interacting orbital transitions and possible solutions are discussed. Finally, we apply FDE and the selective KS-TDDFT to investigate the potential energy surface of a high-lying π → π excitation in a pyridine molecule approaching a silver cluster.  相似文献   

19.
Starting point is the energy expectation value as a functional of the one-particle density matrix gamma and the two-particle density cumulant lambda(2). We decompose gamma into a best idempotent approximation kappa and a correction tau, that is entirely expressible in terms of lambda(2). So we get the energy E as a functional of kappa and lambda(2), which can be varied independently. Approximate n-representability conditions, derived by perturbation theory are imposed on the variation of lambda(2). A nonlinear system of equations satisfied by lambda(2) is derived, the linearized version of which turns out to be equivalent to the coupled electron-pair approximation, variant zero. The start for kappa is Hartree-Fock, but kappa is then updated to become the best idempotent approximation of gamma. Relations to density matrix functional theory and Kohn-Sham type density functional theory are discussed.  相似文献   

20.
A new method based on linear response theory is proposed for the determination of the Kohn-Sham potential corresponding to a given electron density. The method is very precise and affords a comparison between Kohn-Sham potentials calculated from correlated reference densities expressed in Slater-(STO) and Gaussian-type orbitals (GTO). In the latter case the KS potential exhibits large oscillations that are not present in the exact potential. These oscillations are related to similar oscillations in the local error function δ i (r)=(−ɛ i i (r) when SCF orbitals (either Kohn-Sham or Hartree-Fock) are expressed in terms of Gaussian basis functions. Even when using very large Gaussian basis sets, the oscillations are such that extreme care has to be exercised in order to distinguish genuine characteristics of the KS potential, such as intershell peaks in atoms, from the spurious oscillations. For a density expressed in GTOs, the Laplacian of the density will exhibit similar spurious oscillations. A previously proposed iterative local updating method for generating the Kohn-Sham potential is evaluated by comparison with the present accurate scheme. For a density expressed in GTOs, it is found to yield a smooth “average” potential after a limited number of cycles. The oscillations that are peculiar to the GTO density are constructed in a slow process requiring very many cycles. Received: 24 February 1997 / Accepted: 18 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号