首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
对满足最大角条件和坐标系条件的二维区域中的各向异性一般三角形网格,研究了二阶椭圆问题的非协调Crouzeix-Raviart型线性三角形有限元逼近,得到了最优的能量模和L2-模误差估计结果.  相似文献   

2.
This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the displacement by piecewise constants. We establish ??(h) error bound in the (broken) L2 norm for the divergence of the stress and ??(h) error bound in the L2 norm for both the displacement and the stress tensor. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

3.
The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell’s equations.Then the corresponding optimal error estimates are derived.The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h 3 ) ,properly one order higher than that of its interpolation error O(h 2 ) in the broken energy norm,where h is the subdivision parameter tending to zero.  相似文献   

4.
We derive residual based a posteriori error estimates for parabolic problems on mixed form solved using Raviart–Thomas–Nedelec finite elements in space and backward Euler in time. The error norm considered is the flux part of the energy, i.e. weighted L 2(Ω) norm integrated over time. In order to get an optimal order bound, an elementwise computable post-processed approximation of the scalar variable needs to be used. This is a common technique used for elliptic problems. The final bound consists of terms, capturing the spatial discretization error and the time discretization error and can be used to drive an adaptive algorithm.  相似文献   

5.
Nonconforming Galerkin methods for a Helmholtz‐like problem arising in seismology are discussed both for standard simplicial linear elements and for several new rectangular elements related to bilinear or trilinear elements. Optimal order error estimates in a broken energy norm are derived for all elements and in L2 for some of the elements when proper quadrature rules are applied to the absorbing boundary condition. Domain decomposition iterative procedures are introduced for the nonconforming methods, and their convergence at a predictable rate is established. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 475–494, 2001  相似文献   

6.
We consider conforming finite element approximation of fourth‐order singularly perturbed problems of reaction diffusion type. We prove superconvergence of standard C1 finite element method of degree p on a modified Shishkin mesh. In particular, a superconvergence error bound of in a discrete energy norm is established. The error bound is uniformly valid with respect to the singular perturbation parameter ?. Numerical tests indicate that the error estimate is sharp. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 550–566, 2014  相似文献   

7.
We derive guaranteed a posteriori error estimates for nonconforming finite element approximations to a singularly perturbed reaction–diffusion problem. First, an abstract a posteriori error bound is derived under a special equilibration condition. Based on conservative flux reconstruction, two error estimators are proposed and provide actual upper error bounds in the usual energy norm without unknown constants, one of which can be directly constructed without solving local Neumann problems and provide practical computable error bounds. The error estimators also provide local lower bounds but with the multiplicative constants dependent on the diffusion coefficient and mesh size, where the constants can be bounded for enough small mesh size comparable with the square root of the diffusion coefficient. By adding edge jumps with weights to the energy norm, two modified error estimators with additional edge tangential jumps are shown to be robust with respect to the diffusion coefficient and provide guaranteed upper bounds on the error in the modified norm. Finally, the performance of the estimators are illustrated by the numerical results.  相似文献   

8.
In this article we analyze a subdomain residual error estimator for finite element approximations of elliptic problems. It is obtained by solving local problems on patches of elements in weighted spaces and provides an upper bound on the energy norm of the error when the local problems are solved in sufficiently enriched discrete spaces. A guaranteed lower bound on the error is also derived by a simple postprocess of the solutions to the local problems. Numerical tests show very good effectivity indices for both the upper and lower bounds and a strong reliability of this estimator even for coarse meshes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 165–192, 2004  相似文献   

9.
本文在各向异性网格下讨论了一般二阶椭圆方程的EQ1rot非协调有限元逼近. 利用Taylor展开, 积分恒等式和平均值技巧导出了一些关于该元新的高精度估计. 再结合该元所具有的二个特殊性质: (a)当精确解属于H3时, 其相容误差为O(h2)阶比它的插值误差高一阶; (b)插值算子与Ritz投影算子等价,得到了在能量模意义下O(h2)阶的超逼近性质. 进而,借助于插值后处理技术给出了整体超收敛的一般估计式.  相似文献   

10.
张亚东  石东洋 《计算数学》2013,35(2):171-180
本文将 Crouzeix-Raviart 型非协调线性三角形元应用到抛物方程,建立了一个新的混合元格式.在抛弃传统有限元分析的必要工具 Ritz 投影算子的前提下,直接利用单元的插值性质和导数转移技巧, 分别得到了各向异性剖分下关于原始变量u 的H-1-模和积分意义下L2-模以及通量p=-▽u 在L2-模下的最优阶误差估计.数值结果与我们的理论分析是相吻合的.  相似文献   

11.
A compact C0 discontinuous Galerkin (CCDG) method is developed for solving the Kirchhoff plate bending problems. Based on the CDG (LCDG) method for Kirchhoff plate bending problems, the CCDG method is obtained by canceling the term of global lifting operator and enhancing the term of local lifting operator. The resulted CCDG method possesses the compact stencil, that is only the degrees of freedom belonging to neighboring elements are connected. The advantages of CCDG method are: (1) CCDG method just requires C0 finite element spaces; (2) the stiffness matrix is sparser than CDG (LCDG) method; and (3) it does not contain any parameter which can not be quantified a priori compared to C0 interior penalty (IP) method. The optimal order error estimates in certain broken energy norm and H1‐norm for the CCDG method are derived under minimal regularity assumptions on the exact solution with the help of some local lower bound estimates of a posteriori error analysis. Some numerical results are included to verify the theoretical convergence orders. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1265–1287, 2015  相似文献   

12.
A new a posteriori error estimate is derived for the stationary convection–reaction–diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are introduced to construct such a splitting and tune the resulting bound. If these functions are chosen in an optimal way, the exact energy norm of the error is recovered, which proves that the estimate is sharp. The presented methodology is completely independent of the numerical technique used to compute the approximate solution. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g. due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors, etc. Moreover, the only constant that appears in the proposed error estimate is global and stems from the Friedrichs–Poincaré inequality. Numerical experiments illustrate the potential of the proposed error estimation technique.  相似文献   

13.
** Email: emmanuil.georgoulis{at}mcs.le.ac.uk*** Email: al{at}maths.strath.ac.uk We consider a variant of the hp-version interior penalty discontinuousGalerkin finite element method (IP-DGFEM) for second-order problemsof degenerate type. We do not assume uniform ellipticity ofthe diffusion tensor. Moreover, diffusion tensors of arbitraryform are covered in the theory presented. A new, refined recipefor the choice of the discontinuity-penalization parameter (thatis present in the formulation of the IP-DGFEM) is given. Makinguse of the recently introduced augmented Sobolev space framework,we prove an hp-optimal error bound in the energy norm and anh-optimal and slightly p-suboptimal (by only half an order ofp) bound in the L2 norm (the latter, for the symmetric versionof the IP-DGFEM), provided that the solution belongs to an augmentedSobolev space.  相似文献   

14.
We consider a Galerkin finite element method that uses piecewise bilinears on a class of Shishkin‐type meshes for a model singularly perturbed convection‐diffusion problem on the unit square. The method is shown to be convergent, uniformly in the diffusion parameter ϵ, of almost second order in a discrete weighted energy norm. As a corollary, we derive global L2‐norm error estimates and local L‐norm estimates. Numerical experiments support our theoretical results. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16:426–440, 2000  相似文献   

15.
A new 12-parameter rectangular plate element is presented by use of the double set parameter method. The error in the energy norm is of orderO(h 2 ), one order higher than the commonly used Adini nonconforming element.  相似文献   

16.
We consider a bilinear reduced-strain finite element formulation for a shallow shell model of Reissner-Naghdi type. The formulation is closely related to the facet models used in engineering practice. We estimate the error of this scheme when approximating an inextensional displacement field. We make the strong assumptions that the domain and the finite element mesh are rectangular and that the boundary conditions are periodic and the mesh uniform in one of the coordinate directions. We prove then that for sufficiently smooth fields, the convergence rate in the energy norm is of optimal order uniformly with respect to the shell thickness. In case of elliptic shell geometry the error bound is furthermore quasioptimal, whereas in parabolic and hyperbolic geometries slightly enhanced smoothness is required, except for the degenerate cases where the characteristic lines are parallel with the mesh lines. The error bound is shown to be sharp.

  相似文献   


17.
A singularly perturbed one-dimensional convection-diffusion problem is solved numerically by the finite element method based on higher order polynomials. Numerical solutions are obtained using S-type meshes with special emphasis on meshes which are graded (based on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted energy norm are proved. We derive an 'optimal' mesh generating function in order to minimize the constant in the error estimate. Two layer-adapted meshes defined by a recursive formulae in the fine mesh region are also considered and a new technique for proving error estimates for these meshes is presented. The aim of the paper is to emphasize the importance of using optimal meshes for higher order finite element methods. Numerical experiments support all theoretical results.  相似文献   

18.
作为序列文章自适应有限元方法在凹角域线性椭圆方程的应用的第三篇,在本文我们将给出并详细论证一个重要结论即 |?(u(x)-U(x))|≤Ch(x)|x|β-2,|x|≥C′h且进一步分析说明在本序列文章的第一部分和地二部分得出方法都是以此为基础作出的。  相似文献   

19.
A low order characteristic‐nonconforming finite element method is proposed for solving a two‐dimensional convection‐dominated transport problem. On the basis of the distinguish property of element, that is, the consistency error can be estimated as order O(h2), one order higher than that of its interpolation error, the superclose result in broken energy norm is derived for the fully discrete scheme. In the process, we use the interpolation operator instead of the so‐called elliptic projection, which is an indispensable tool in the traditional finite element analysis. Furthermore, the global superconvergence is obtained by using the interpolated postprocessing technique. Lastly, some numerical experiments are provided to verify our theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new nonconforming brick element with quadratic convergence for the energy norm is introduced. The nonconforming element consists of on a cube [?1,1]3, and 14 degree of freedom (DOF). Two types of DOF are introduced. One consists of the value at the eight vertices and six face‐centroids and the other consists of the value at the eight vertices and the integration value of six faces. Error estimates of optimal order are derived in both broken energy and norms for second‐order elliptic problems. If a genuine hexahedron, which is not a parallelepiped, is included in the partition, the proposed element is also convergent, but with a lower order. Copyright © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 158–174, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号