首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》2014,25(3):258-262
The ligand design of one of the most successful monophosphite ligand classes in Rh-catalyzed hydrogenation was expanded upon by introducing several substituents at the C-3 position of the furanoside backbone. A small but structurally important library of monophosphite ligands was developed by changing the substituents at the C-3 position of the furanoside backbone and the substituents/configurations at the biaryl phosphite group. These new furanoside monophosphite ligands were evaluated in the Rh-catalyzed asymmetric hydrogenation of α,β-unsaturated carboxylic acid derivatives and enamides. The results show that the effect of introducing a substituent at the C-3 position of the furanoside backbone on the enantioselectivity depends not only on the configuration at the C-3 position of the furanoside backbone and the binaphthyl group but also on the substrate. Thus, the new ligands afforded high to excellent enantioselectivities in the reduction of carboxylic acid derivatives (ee’s up to >99.9%) and moderate ee’s (up to 67%) in the hydrogenation of enamides.  相似文献   

2.
Quantum mechanical analysis reveals that carbonyl reduction of aldehydes and ketones by the imine-based reductant cis-[Os(III)(tpy)(Cl)(NH═CHCH(3))(NSAr)] (2), which is accessible by reduction of the analogous nitrile, occurs by hydride-proton transfer (HPT) involving both the imine and sulfilimido ligands. In carbonyl reduction, water or alcohol is necessary to significantly lower the barrier for proton shuttling between ligands. The -N(H)SAr group activates the carbonyl group through hydrogen bonding while the -NC(H)CH(3) ligand delivers the hydride.  相似文献   

3.
The kinetics of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)) oxidation and reduction in acetonitrile were investigated by steady-state voltammetry using scanning electrochemical microscopy (SECM). The SECM setup was placed inside a drybox for carrying out experiments in an anhydrous atmosphere and in the absence of oxygen. The standard rate constant, k°, for Ru(bpy) oxidation at a Pt electrode (radius, a = 5 μm) was 0.7 ± 0.1 cm/s, which is smaller than k° for Ru(bpy) reduction measured under the same conditions (≥3 cm/s). This is attributed to the 2,2'-bipyridine ligands having an electron-transfer (ET) blocking effect on the oxidation of the ruthenium(II) center, as opposed to the reduction, which involves ET to the exposed ligands. Thus, tunneling effects may be important in considering the ET in this molecule.  相似文献   

4.
Main‐group complexes are shown to be viable electrocatalysts for the H2‐evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton‐reduction catalytic properties of TPSb(OH)2 (TP=5,10,15,20‐tetra(p ‐tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox‐active ligands during catalysis.  相似文献   

5.
The mechanism of abnormal condensation of 2,6-diformyl-4-R-phenols with 1,2-diaminobenzenes accompanied by the reduction of two of four double C=N bonds in macrocyclic Schiff"s bases formed was studied by DFT (gradient-corrected PBE functional, TZ2p basis set). In the first step, [1+1] Schiff"s base is formed and disproportionates further to afford amine and benzoimidazolylphenols. Two new macrocyclic polydentate ligands containing two CH2—NH moieties in the rings were synthesized. The reduction of one of these ligands with sodium borohydride gave the new macrocyclic ligand, whose structure and conformations were studied by the DFT method.  相似文献   

6.
The reactivity of two classes of ruthenium nanoparticles (Ru NPs) of small size, either sterically stabilized by a polymer (polyvinylpyrrolidone, PVP) or electronically stabilized by a ligand (bisdiphenylphosphinobutane, dppb) was tested towards standard reactions, namely CO oxidation, CO2 reduction and styrene hydrogenation. The aim of the work was to identify the sites of reactivity on the nanoparticles and to study how the presence of ancillary ligands can influence the course of these catalytic reactions by using NMR and IR spectroscopies. It was found that CO oxidation proceeds at room temperature (RT) on Ru NPs but that the system deactivates rapidly in the absence of ligands because of the formation of RuO2. In the presence of ligands, the reaction involves exclusively the bridging CO groups and no bulk oxidation is observed at RT under catalytic conditions. The reverse reaction, CO2 reduction, is achieved at 120 °C in the presence of H2 and leads to CO, which coordinates exclusively in a bridging mode, hence evidencing the competition between hydrides and CO for coordination on Ru NPs. The effect of ligands localized on the surface is also evidenced in catalytic reactions. Thus, styrene is slowly hydrogenated at RT by the two systems Ru/PVP and Ru/dppb, first into ethylbenzene and then into ethylcyclohexane. Selectively poisoning the nanoparticles with bridging CO groups leads to catalysts that are only able to reduce the vinyl group of styrene whereas a full poisoning with both terminal and bridging CO groups leads to inactive catalysts. These results are interpreted in terms of location of the ligands on the particles surface, and evidence site selectivity for both CO oxidation and arene hydrogenation.  相似文献   

7.
Du DM  Fang T  Xu J  Zhang SW 《Organic letters》2006,8(7):1327-1330
[reaction: see text] A series of new chiral C(3)-symmetric tris(beta-hydroxy phosphoramide) ligands have been synthesized via the reaction of trisphosphoramide ester and Grignard reagents. The catalytic asymmetric borane reduction of ketones with these new C(3)-symmetric chiral tris(beta-hydroxy phosphoramide)s was investigated. Structurally well-defined, recoverable ligand 1d is an efficient catalyst for the enantioselective borane reduction of both electron-deficient and electron-rich ketones, and high enantioselectivities were achieved (up to 98% ee).  相似文献   

8.
A series of Pd(II) and Pt(II) complexes with two N(∩)S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl2 and PtCl2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.  相似文献   

9.
Reaction of beta-diketiminate copper(II) complexes and Na2S2 resulted in formation of (mu-eta2:eta2-disulfido)dicopper(II) complexes (adduct formation) or beta-diketiminate copper(I) complexes (reduction of copper(II)) depending on the substituents of the supporting ligands. In the case of sterically less demanding ligands, adduct formation occurred to provide the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas reduction of copper(II) took place to give the corresponding copper(I) complexes with sterically more demanding beta-diketiminate ligands. Spectroscopic examinations of the reactions at low temperature using UV-vis and ESR as well as kinetic analysis have suggested that a 1 : 1 adduct LCuII-S-SNa with an end-on binding mode is initially formed as a common intermediate, from which different reaction pathways exist depending on the steric environment of the metal-coordination sphere provided by the ligands. Thus, with the sterically less demanding ligands, rearrangement of the disulfide adduct from end-on to side-on followed by self-dimerisation occurs to give the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas such an intramolecular rearrangement of the disulfide co-ligand does not take place with the sterically more demanding ligands. In this case, homolytic cleavage of the CuII-S bond occurs to give the reduced copper(I) product. The steric effects of the supporting ligands have been discussed on the basis of detailed analysis of the crystal structures of the copper(II) starting materials.  相似文献   

10.
Recent advancement on the redox properties of a selection of transition metal complexes of the azoaromatic ligands: bidentate L(1) [2-(arylazo)pyridine] and tridentate HL(2) [2-(aminoarylphenylazo)pyridine] are described and compared. Due to the presence of a low lying azo-centered π*-orbital, these azoaromatic ligands may exist in multiple valent states. The coordination chemistry of the L(1) ligands was thoroughly studied during the 1980s. These complexes undergo facile reduction in solution at low accessible potentials. One electron reduced azo-complexes, though known for a long time to occur in solution, have only recently been isolated in a crystalline state. New synthetic protocols for the synthesis of metal-bound azo-radical complexes have been developed. Low-valent metal complexes such as metal carbonyls have been found to be excellent starting materials for this purpose. In a few selected cases, syntheses of these complexes were also achieved from very high valent metal oxides using triphenylphosphine as both a reducing and oxo-abstracting agent. Issues related to the ambiguities of the electronic structures in the azo-metal complexes have been discussed considering bond parameters, redox and spectral properties. Unusual redox events such as RIET (Redox-Induced Electron Transfer) phenomena in a few systems have been elaborated and compared with the known example. Novel examples of N=N bond cleavage reactions via four-electron reduction and subsequent C-N bond formation in metal-bound coordinated ligands have been noted.  相似文献   

11.
Mo(0) dinitrogen complexes bearing electron-rich mono- and bidentate phosphines can be synthesized in good yields from inexpensive and readily accessible MoCl(5) via a one-step mild reduction with Mg metal. trans-[(N(2))(2)Mo(PMePh(2))(PPh(CH(2)CH(2)PPh(2))(2))] can also be obtained via this strategy. However, in the presence of tri- and tetradentate ligands that are sterically restrictive, the analogous reduction leads to either (η(6)-arene) formation or [Mo(multidentate phosphine)(m)](n) oligomer complexes that have no dinitrogen ligands. One such η(6)-arene complex, where the Mo(0) center is ligated by 1,1,1-tris(diphenylphosphinomethyl)ethane, was isolated and characterized via X-ray crystallography.  相似文献   

12.
Silaborations of 1,3-cyclohexadiene and 1,3-cycloheptadiene were achieved using catalysts prepared from different combinations of phosphorus ligands and group 10 metal compounds. For the six-membered compound, 1,4-adducts with up to 82% ee were obtained employing Pt(0) and phosphoramidite ligands. For the seven-membered diene optimal conditions were found using catalysts based on Ni(0), but the highest selectivity observed was merely 22% ee. No improvement of the chiral induction was obtained using chiral silylboranes in combination with chiral phosphoramidite ligands in the additions to 1,3-cyclohexadiene. The adduct obtained from cyclohexadiene was used in allylborations of aldehydes under microwave irradiation to produce homoallylic alcohols with moderate to good diastereoselectivity.  相似文献   

13.
《Tetrahedron: Asymmetry》2001,12(2):329-336
Several new chiral urea and thiourea ligands have been prepared by reaction of (1R,2R)-1,2-diaminocyclohexane with various organic isocyanates and isothiocyanates. These were used as ligands in the ruthenium catalysed enantioselective reduction of aromatic ketones by isopropanol. The reduction proceeded at room temperature using 2 mol% of ruthenium catalyst to give good yields of the (R)-alcohol with enantiomeric excesses of up to 83%. By contrast, the use of bis-urea ligands gave much lower enantioselectivities. Amino-thiourea ligands led to the (S)-alcohol with low enantiomeric excess.  相似文献   

14.
The reaction of [CpZrCl3(thf)2] with methyl 4,6-O-benzylidene-beta-D-glucopyranoside (beta-MeBGH2, 1) in the presence of Et3N results in the formation of the zirconate complex [Et3NH] [(CpZrCl)2(mu-Cl) (mu-(beta-MeBG)]2] (2). X-ray structure analyses were performed from the ligand precursor beta-MeBGH2 1 as well as from 2. Compound 1 crystallizes in the monoclinic chiral space group P2(1). The molecules show a flat arrangement including the benzylidene protecting group, and are packed in columns. The columns are held together in pairs by the formation of hydrogen bonds between the hydroxy functions in positions 2 and 3. Compound 2 crystallizes in the orthorhombic space group P2(1)2(1)2(1). The beta-MeBG ligands are chelating the Zr atoms through the oxygen atoms in positions 2 and 3 of the glucopyranosidato ligand revealing a 1-zircona-2,5-dioxolane moiety each; the oxygen atom in position 3 is linked to both of the Zr atoms. Additionally one chloro ligand is bridging the two Zr centers. Two terminally bound chloro ligands stick out from the two Zr atoms into a chiral U-shaped cavity constructed by the two beta-MeBG ligands. The cavity incorporates the tertiary ammonium cation [Et3NH]+ which is bound to one of the terminal chloro ligands through a hydrogen bond. The inclusion of the [Et3NH]+ cation in the U-shaped cavity, even in solution, is demonstrated by NMR spectroscopic data.  相似文献   

15.
A library of novel dipeptide-analogue ligands based on the combination of tert-butoxycarbonyl(N-Boc)-protected alpha-amino acids and chiral vicinal amino alcohols were prepared. These highly modular ligands were combined with [[RuCl(2)(p-cymene)](2)] and the resulting metal complexes were screened as catalysts for the enantioselective reduction of acetophenone under transfer hydrogenation conditions using 2-propanol as the hydrogen donor. Excellent enantioselectivity of 1-phenylethanol (up to 98 % ee) was achieved with several of the novel catalysts. Although most of the ligands contained two stereocenters, it was demonstrated that the absolute configuration of the product alcohol was determined by the configuration of the amino acid part of the ligand. Employing ligands based on L-amino acids generated S-configured products, and catalysts based on D-amino acids favored the formation of the R-configured alcohol. The combination N-Boc-L-alanine and (R)-phenylglycinol (Boc-L-Ab) or its enantiomer (N-Boc-D-alanine and (S)-phenylglycinol, Boc-D-Aa) proved to be the best ligands for the reduction process. Transfer hydrogenation of a number of aryl alkyl ketones were evaluated and excellent enantioselectivity, up to 96 % ee, was obtained.  相似文献   

16.
合成了一系列含N-杂环卡宾二硫化碳加合物配体的锰铼金属有机化合物,其中包括3种单核化合物和3种双核化合物,对它们的结构进行了表征,并研究其反应性和电化学性质. 与三烷基膦二硫化碳配体相比,含N-杂环卡宾二硫化碳加合物配体的锰铼金属有机化合物展现出不同的反应特性. 研究结果表明,[MnRe(CO)6(μ-H){μ-CH3SC(S)IMes2}]配合物具有催化质子还原成氢气的能力.  相似文献   

17.
Polymeric Schiff base ligands were synthesized using 2-hydroxybenzaldehyde (L2), 4-hydroxy-3-methoxybenzaldehyde (L4), and 5-aminoisophthalic acid. The nanostructured complexes were then synthesized using Ni2+, Cu2+, and Mn3+. The ligands and complexes thus synthesized were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy. The thermal stability of the complexes was confirmed using TGA. The synthesized complexes were used as catalysts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol in an aqueous phase in the presence of sodium borohydride. In this work, the catalytic reactivity of nanostructured complexes was compared using the rate constant (k) of the reaction. The reaction time for the reduction of 4-NP was 5–14 min for different complexes. The catalytic system based on Ni2+/2-hydroxybenzaldehyde was the most active and displayed reusability in the reduction of 4-NP.  相似文献   

18.
The rate of substitution to reduction has been investigated for reactions of three phenyl-substituted allylic ethers and the corresponding acetates with EtMgBr plus 10 or 25% copper(I) bromide in THF. It is found that the relative amount of reduction increases with increased electron delocalization in the postulated copper(III)-bound allyl ligand, and is also dependent on the nature of the leaving group; methoxy giving much more reduction product than acetoxy. Furthermore, for one acetate investigated there was more reduction at −65° than at −25°C. The results are interpreted in terms of relative binding strength of allyl ligands to a copper(III) intermediate.  相似文献   

19.
The coordination chemistry of an N-heterocyclic phosphenium (NHP)-containing bis(phosphine) pincer ligand has been explored with Pt(0) and Pd(0) precursors. Unlike previous compounds featuring monodentate NHP ligands, the resulting NHP Pt and Pd complexes feature pyramidal geometries about the central phosphorus atom, indicative of a stereochemically active lone pair. Structural, spectroscopic, and computational data suggest that the unusual pyramidal NHP geometry results from two-electron reduction of the phosphenium ligand to generate transition metal complexes in which the Pt or Pd centers have been formally oxidized by two electrons. Interconversion between planar and pyramidal NHP geometries can be affected by either coordination/dissociation of a two-electron donor ligand or two-electron redox processes, strongly supporting an isolobal analogy with the linear (NO(+)) and bent (NO(-)) variations of nitrosyl ligands. In contrast to nitrosyls, however, these new main group noninnocent ligands are sterically and electronically tunable and are amenable to incorporation into chelating ligands, perhaps representing a new strategy for promoting redox transformations at transition metal complexes.  相似文献   

20.
Selective reduction of 2-nitro-3-methoxybenzaldehyde provides 2-amino-3-methoxybenzaldehyde that undergoes the Friedl?nder condensation with a variety of acetyl-substituted derivatives of pyridine and 1,10-phenanthroline. After cleavage of the methyl ether, the resulting polydentate analogues of 8-hydroxyquinoline are excellent ligands for ruthenium. The resulting oxidation state of the metal center depends on the anionic character of the ligands. The presence of two electron donating anionic ligands results in a Ru(III) complex as evidenced by paramagnetic NMR behavior. The electronic absorption and redox properties of the complexes were measured and found to be consistent with the anionic character of the 8-HQ moieties. A planar pentadentate ligand provides two Ru-O and two Ru-N bonds in the equatorial plane. An X-ray structure shows that the central pyridine of the ligand is oriented toward the metal but held at a distance of 2.44 ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号