首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we detail the results of 1H–15N correlation data obtained via 13C–15N coupling at natural abundance on a number of classes of azoles including pyrazoles, imidazoles and triazoles. The experiment produces data that is highly complementary to direct 1H–15N HMBC type correlations in that it can provide 15N chemical shift data for nitrogen that may not show up in the HMBC. This is particularly advantageous in the triazoles where 15N chemical shift can be diagnostic of regiochemistry. Because of the consistency in JCN values among the azoles, the experiment produces distinctive correlation patterns that can be used for identification of regiochemistry. The experiment can also be used to directly measure 13C–15N coupling constants. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

3.
(1)H, (19)F, (13)C, (15)N, and (17)O NMR chemical shifts and (1)H-(1)H, (1)H-(19)F, (1)H-(13)C, (19)F-(13)C, and (19)F-(15)N coupling constants are reported for 2-(trifluoromethyl)-2-oxazoline.  相似文献   

4.
Using modern NMR techniques, including 1H--13C and 1H--15N heteronuclear correlation experiments, the complete and unambiguous 1H, 13C, and 15N NMR chemical shift assignments of annomontine, methoxyannomontine, and N-hydroxyannomontine pyrimidine-beta-carboline alkaloids were performed. All 1H--1H scalar coupling constants and signal multiplicities were determined, and all nOe observations were also included.  相似文献   

5.
Through‐space 19F–15N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The 19F–15N coupling constants were measured at natural abundance using a spin‐state selective indirect‐detection pulse sequence. As 15N‐labelled proteins are routinely synthesized for NMR studies, through‐space 19F–15N couplings have the potential to probe the stereochemistry of these proteins by 19F labelling of some amino acids or can reveal the site of docking of fluorine‐containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The complete assignment of 19F, 1H and 13C NMR spectra for a monosubstituted octafluoro[2.2]paracyclophane derivative is described for the first time. The unambiguous assignments were achieved through the combination of 19F--1H HOESY, 1H COSY and 19F COSY techniques and then further confirmed employing a complementary approach using a Karplus-dependent 3JCF interaction. Interesting aspects of the coupling patterns for various JHH, JHF, JCF and JFF interactions are also discussed.  相似文献   

8.
The title compounds contain groups (amine, amide, imine, carboxylic acid) that are capable of forming intramolecular hydrogen bonds involving a six-membered ring. In compounds where the two interacting functional groups are imine and carboxylic acid, the imine is protonated to give a zwitterion; where the two groups are imine and amide, the amide remains intact and forms a hydrogen bond to the imine nitrogen. The former is confirmed by the iminium 15N signal, which shows the coupling of 1J(15N,1H) -85 to -86.8 Hz and 3J(1H,1H) 3.7-4.2 Hz between the iminium proton and the methine proton of a cyclopropyl substituent on the iminium nitrogen. Hydrogen bonding of the amide is confirmed by its high 1H chemical shift and by coupling of the amide hydrogen to (amide) nitrogen [(1J(15N,1H) -84.7 to -90.7 Hz)] and to ortho carbons of a phenyl substituent. Data obtained from N,N-dimethylanthranilic acid show 15N-1H coupling of (-)8.2 Hz at 223 K (increasing to (-)5.3 Hz at 243 K) consistent with the presence of a N... H-O hydrogen bond.  相似文献   

9.
Complete assignment of the 1H and 19F chemical shifts in 4‐fluoro‐AF4 (1) were based on the nOes seen in its 19F‐1H HOESY spectrum. This allowed for identification of features which can further be applied to the assignment of the regiochemistry of substituted perfluoroparacyclophanes (PCPs) and AF4s: (i) an aromatic fluorine couples with the two fluorines in the closest bridge that are syn to it, with constants of ca. 20 Hz; (ii) an aromatic fluorine couples with the bridge fluorine five bonds away that is anti to it in the same paraphenylene moiety, with a constant of ca. 3.5 Hz; (iii) the geminal coupling of the bridge fluorines is 246 Hz if they have an ortho fluorine and 238 Hz if they do not; (iv) a bridge fluorine couples with those aromatic protons in the same paraphenylene moiety that are four or five bonds away and anti. These features have been used to assign the regiochemistry of the pseudo‐ortho, pseudo‐meta and pseudo‐para‐difluoro AF4s 2–4. It has also been demonstrated that SCS for the bridge fluorines can be used as well for this assignment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data.  相似文献   

11.
In this article, we describe the characteristic 15N chemical shifts of isatin oxime ethers and their isomer nitrone. These oxime ethers and nitrones are the alkylation reaction products of isatin oximes. In our study, the 15N chemical shifts observed in these oxime ethers were in the 402–408 (or 22–28) ppm range, although those for their corresponding nitrone series were in the 280–320 (or ?100 to ?60) ppm range. This remarkable difference in 15N NMR chemical shift values could potentially be used to determine the Oversus N‐alkylation of oximes, even when only one isomer is available. In this paper, the differences in 15N NMR chemical shifts serve as the basis for a discussion about how to distinguish both regioisomers derived from the oximes alkylation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H? 15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H? 15N coupling constants, measured by using 1H? 15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The 15N as well as 1H and 13C chemical shifts of nine substituted tetrazolopyridines and their corresponding tetrazolopyridinium salts have been determined by using NMR spectroscopy at the natural abundance level of all nuclei in CD3CN. In this paper, we report, for the first time, the N‐alkylation reaction of electron deficient tetrazolopyridines. The treatment of tetrazolopyridines 5–13 with one equivalent of trialkyloxonium tetrafluoroborate leads to a mixture of two isomers, i.e. N3‐ and N2‐alkyl tetrazolo[1,5‐a]pyridinium salts. It has been observed that the N3‐isomer is always the major isomer, except in the case of the CF3 substituent, where the two isomers are obtained in the same amount. The quaternary tetrazolopyridinium nitrogen N3 is shielded by around 100 ppm (parts per million) with respect to the parent tetrazolopyridine. Experimental data are interpreted by means of density functional theory (DFT) calculations, including solvent‐induced effects, within the conductor‐like polarizable continuum model (CPCM). Good agreements between theoretical and experimental 1H, 13C and 15N NMR were found. The combination of multinuclear magnetic resonance spectroscopy with gauge including atomic orbital (GIAO) DFT calculations is a powerful tool in the structural elucidation for both neutral and cationic heterocycles and in the determination of the orientation of N‐alkylation of tetrazolopyridines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Propargylation of 3-substituted-1,2,4-triazole-5-thiols, which predominantly exist as their thione tautomers, was carried out with the view to synthesize different heterocycles and study their biological activity. Three different products namely, a mono S-propargyl and two S,N-dipropargyl regioisomers, arising from N1/N2 substitution, were isolated and characterized. Unambiguous structural elucidation of the regioisomers of S,N-dipropargyl derivatives was achieved by means of (13)C-(1)H HMBC technique. The proportion of the regioisomers was found to vary with the substituent on the 1,2,4-triazole thiols. No product corresponding to N4 substitution was isolated from any of the reactions carried out.  相似文献   

15.
A series of 3‐substituted 1,2,3‐benzotriazin‐4‐ones, 1 and 2, were synthesized by standard methods and the 15N NMR spectra were recorded. All spectra were obtained using the natural abundance of the nitrogen‐15 isotope. The chemical shifts appear in the normal range for N‐1, N‐2 and N‐3 of the triazine ring, and also correlate with the chemical shifts in the spectra of the imidazolotriazinone, 4, and the imidazolotetrazinone, 5. Significantly, the spectra of 1a, 2 and 4, recorded with full NOE, show inversion of the singlet assigned to N‐3, demonstrating that these compounds exist in the tautomeric form shown. The structure of the 4‐iminobenzotriazinone (3) was confirmed by this 15N NMR analysis. The spectrum shows a signal for the NH‐bearing imino‐nitrogen atom, which is an inverted singlet in the NOE spectrum, whereas the signal from the N‐3 atom of 3 is not inverted in the NOE spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Reference compounds based on borazine units and polyborylborazines have been characterized by 15N solid‐state NMR. The various nitrogen sites (B3N, B2NH, B2NX (X = H, Me, iPr), BN(H)X and BNX2 (X = Me, iPr) have been discriminated according to their cross‐polarization behaviour and chemical shift values, which range from ?265 to ?350 ppm. This has permitted the elucidation of the polymerization mechanism associated with the polycondensation of two borazine‐based derivatives. In particular, this technique appears to be a powerful investigation tool for finding whether the B3N3 rings are linked through three‐atom N? B? N aminoboryl bridges or connected by direct B? N bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Pyridylmethylamines or pma are versatile platforms for different catalytic transformations. Five pma‐ligands and their respective Pd complexes have been studied by liquid state NMR. By comparing 1H, 13C and 15N chemical shifts for each pma/pma–Pd couple, a general trend for the metallacycle atoms concerns variations of the electronic distribution at the pendant arm, especially at the nitrogen atom of the ligand. Moreover, the increase of the chemical shift of the pendant arm nitrogen atom from primary to tertiary amine is also related to the increase of crowding within the complex. This statement is in good agreement with X‐ray data collected for several complexes. Catalytic results for the Suzuki–Miyaura reaction involving the pma–Pd complexes showed within this series that a sterically crowded and electron‐rich ligand in the metallacycle was essential to reach the coupling product with a good selectivity. In this context, NMR study of chemical shifts of all active nuclei especially in the metallacycle could give a trend of reactivity in the studied family of pma–Pd complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A set of regioisomeric pairs of tricyclic hydroquinones, analogues of antitumor 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (1) and other derivatives, were synthesized and their regiochemistry and NMR spectra assigned by using (1)H-detected one-bond (C-H) HMQC and long-range C-H HMBC, in good agreement with theoretical O3LYP/Alhrichs-pVTZ calculations. The 5-hydroxymethyl derivatives (11, 15, 19) showed a (3)J(H, H) coupling constant of methylene protons evidencing the presence of a seven-membered intramolecular hydrogen bonded ring, not observed for the 8-hydroxymethyl isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号