首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-speed counter-current chromatography was successfully applied for the first time to the isolation and purification of the bioactive carotenoid zeaxanthin from the cyanobacterium Microcystis aeruginosa. The crude zeaxanthin was obtained by extraction with organic solvents after the microalgal sample had been saponified. Preparative high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (8:2:7:3, v/v/v/v) was successfully performed yielding zeaxanthin at 96.2% purity from 150 mg of the crude extract in a one-step separation. The recovery of zeaxanthin was 91.4%. This was also the first report that zeaxanthin was successfully separated and purified from microalgae.  相似文献   

2.
Zeaxanthin carotenoids are class of commercially important natural products and diverse biomolecules produced by plants and many microorganisms. Bacteria often produce a cocktail of polar and nonpolar carotenoids limiting their industrial applications. Marine members of the family Flavobacteriaceae are known to produce potential carotenoids such as astaxanthin and zeaxanthin. A few bacterial species have been reported for the predominant production zeaxanthin. Here, we report the molecular identification of the zeaxanthin as a major carotenoid produced by two novel bacteria (YUAB-SO-11 and YUAB-SO-45) isolated from sandy beaches of South West Coast of India and the effect of carbon sources on the production of zeaxanthin. The strains were identified based on the 16S rRNA gene sequencing as a member of genus Muricauda. The closest relatives of YUAB-SO-11 and YUAB-SO-45 were Muricauda aquimarina (JCM 11811T) (98.9 %) and Muricauda olearia (JCM 15563T) (99.2 %), respectively, indicating that both of these strains might represent a novel species. The highest level of zeaxanthin production was achieved (YUAB-SO-11, 1.20?±?0.11 mg g?1) and (YUAB-SO-45, 1.02?±?0.13 mg g?1) when cultivated in marine broth supplemented with 2 % NaCl (pH 7) and incubated at 30 °C. Addition of 0.1 M glutamic acid, an intermediate of citric acid cycle, enhanced the zeaxanthin production as 18 and 14 % by the strains YUAB-SO-11 and YUAB-SO-45 respectively. The zeaxanthin showed in vitro nitric oxide scavenging, inhibition of lipid peroxidation, and 2,2-diphenyl-1-picryl hydrazyl scavenging activities higher than the commercial zeaxanthin. The results of this study suggest that two novel strains YUAB-SO-11 and YUAB-SO-45 belonging to genus Muricauda produce zeaxanthin as a predominant carotenoid, and higher production of zeaxanthin was achieved on glutamic acid supplementation. The pigment showed good in vitro antioxidant activity, which can be exploited further for commercial applications.  相似文献   

3.
Two-component monomolecular layers were formed with DPPC and two stereoisomers of zeaxanthin 9-cis and 13-cis at the argon-water interface. Very distinct over-additivity which represents affection of a lipid arrangement in the membrane has been observed in the case of zeaxanthin 9-cis (maximum at 20 mol%) but not in the case of zeaxanthin 13-cis. The differences in the organization of the isomers of zeaxanthin-DPPC monolayers are interpreted in terms of the different orientation of both xanthophylls at the interface observed at relatively high surface pressures (>25 mN/m) comparable to the surface pressures of biomembranes. The results are consistent with the model according to which zeaxanthin 9-cis adopts a vertical orientation at the polar-nonpolar interface in contrast to zeaxanthin 13-cis, which is oriented horizontally owing to the fact that it interacts by two hydroxyl groups with the same hydrophobic-hydrophilic interface in the monolayer. The findings are discussed in comparison with the behavior of zeaxanthin in the conformation all-trans in the same system. Zeaxanthin all-trans forms efficiently molecular aggregates in the mixed monolayers in contrast to cis isomers. Circular dichroism measurements show the formation of molecular structures by zeaxanthin 13-cis that are interpreted as dimers. FTIR measurements show that these dimers are stabilized by van der Waals interactions unlike aggregated structures formed by all-trans zeaxanthin that are stabilized by hydrogen bonding. Physiological importance of the differences in aggregation and orientation of stereoisomers of zeaxanthin in lipid environment is discussed.  相似文献   

4.
Based on an official standard method of lutein analysis, an improved high performance liquid chromatography (HPLC) method for simultaneously detecting lutein and zeaxanthin was developed as focusing on the sample preparation protocol. The optimal pretreatment conditions included a saponification in a water bath for 15?min at a constant temperature of 50?°C, using a 10?mL 60% (w/v) potassium hydroxide solution, followed by extraction using 100?mL mixture of n-hexane, ethyl ether and cyclohexane (40: 40: 20, v/v/v). A mixture of dichloromethane, acetonitrile and methanol (20: 30: 50, v/v/v) was validated to elute lutein and zeaxanthin on a C30 column (4.6?×?250?mm, 5?µm). The resolution between lutein and zeaxanthin is ≥2.5. A millet sample was used for methodological verification and the results showed that the linear relations for lutein and zeaxanthin were good in ranges of 0.23–9.37?μg/mL and 0.30–12.02?μg/mL, respectively. The relative standard deviations of lutein and zeaxanthin were 1.40% and 5.09%, respectively, and their spiked recoveries were between 86.60% and 98.75%. The lutein and zeaxanthin results from this modified HPLC method are superior to those from the Chinese official method and ultrasonic extraction method.  相似文献   

5.
Sponge-associated bacteria have been found to produce a variety of bioactive compounds including natural pigments. Here, we report the molecular identification of zeaxanthin-producing sponge-associated bacteria isolated from sponges in the Gulf of Thailand and the effect of environmental factors on zeaxanthin production from a bacterium. Three colorful sponge-associated bacteria (CHOB06-6, KODA19-6, and MAKB08-4) were identified based on the 16S rDNA profile. The 16S rDNA sequence-based analyses revealed that CHOB 06-6 and MAKB 08-4 were the closest relatives to Sphingomonas phyllosphaerae FA2T, and KODA19-6 was a relative of Shingomonas (Blastomonas) natatoria DSM 3183T. After all bacteria were cultivated in a modified Zobell medium, S. natatoria KODA19-6 was found to produce the highest zeaxanthin at 0.62?mg/l. pH and temperature considerably affected its zeaxanthin production. Its optimal condition for zeaxanthin production was found at a pH of 7 and 30?°C. The bacterium had a maximum specific growth rate (?? max) of 0.06?1/h with zeaxanthin productivity (Q p) of 6.27???g/l·h. Therefore, this newly zeaxanthin-producing bacterium has a potential to produce natural zeaxanthin for the food, feed, pharmaceutical, and cosmetic industries.  相似文献   

6.
In this study, we present a way of controlling the formation of the two types of zeaxanthin aggregates in hydrated ethanol: J-zeaxanthin (head-to-tail aggregate, characteristic absorption band at 530 nm) and H-zeaxanthin (card-pack aggregate, characteristic absorption band at 400 nm). To control whether J- or H- zeaxanthin is formed, three parameters are important: (1) pH, that is, the ability to form a hydrogen bond; (2) the initial concentration of zeaxanthin, that is, the distance between zeaxanthin molecules; and (3) the ratio of ethanol/water. To create H-aggregates, the ability to form hydrogen bonds is crucial, while J-aggregates are preferentially formed when hydrogen-bond formation is prevented. Further, the formation of J-aggregates requires a high initial zeaxanthin concentration and a high ethanol/water ratio, while H-aggregates are formed under the opposite conditions. Time-resolved experiments revealed that excitation of the 530-nm band of J-zeaxanthin produces a different relaxation pattern than excitation at 485 and 400 nm, showing that the 530-nm band is not a vibrational band of the S2 state but a separate excited state formed by J-type aggregation. The excited-state dynamics of zeaxanthin aggregates are affected by annihilation that occurs in both J- and H-aggregates. In H-aggregates, the dominant annihilation component is on the subpicosecond time scale, while the main annihilation component for the J-aggregate is 5 ps. The S(1) lifetimes of aggregates are longer than in solution, yielding 20 and 30 ps for H- and J-zeaxanthin, respectively. In addition, H-type aggregation promotes a new relaxation channel that forms the zeaxanthin triplet state.  相似文献   

7.
This paper reports the research on the effect of two main carotenoid pigments present in the membranes of macula lutea of the vision apparatus of primates, including humans, lutein and zeaxanthin, on the structure of model membranes formed with dimyristoylphosphatidylcholine (DMPC). The effects observed in DMPC are compared to the effects observed in the membranes formed with other phosphatidylcholines (PC): egg yolk PC (EYPC), and dipalmitoyl-PC (DPPC). The analysis has been focused, in particular, on the following aspects of the organization of lipid-carotenoid membranes: aggregation state of pigments, an effect on a thickness of the bilayer and pigment orientation within the membranes. These problems have been addressed with the application of UV-Vis absorption spectroscopy, linear dichroism measurements and the diffractometric technique. (1) Both lutein and zeaxanthin appear in a partially aggregated form in the oriented DMPC multibilayers, even at molar fractions as low as 2 mol.% with respect to lipid. (2) Orientation of the transition dipole of both xanthophylls with respect to the axis normal to the plane of DMPC membrane is different in the case of a monomeric form (34+/-3 degrees in the case of lutein and 26+/-3 degrees in the case of zeaxanthin) but essentially the same in the case of aggregated forms of both pigments (42+/-3 degrees in the case of lutein and 40+/-5 degrees in the case of zeaxanthin). It was found that only lutein has an effect on the increase in the thickness of the DMPC membranes (by about 3 A at 25 degrees C). A similar effect was observed also in the case of DPPC at the same temperatures despite the differences in the physical state of both membrane systems. The differences between the effects of lutein and zeaxanthin observed are interpreted in terms of differences of stereochemical structure of both xanthophylls leading to the different localization in the lipid phase. The results demonstrate significant differences in the behavior of lutein and zeaxanthin in model membranes, which may contribute to their different physiological functions and different efficacy as membrane antioxidants.  相似文献   

8.
Zeaxanthin is a xanthophyll pigment that plays important physiological functions both in the plant and in the animal kingdom. All-trans is a stereochemical conformation of zeaxanthin reported as specific for the thylakoid membranes of the photosynthetic apparatus and the retina of an eye. On the other hand, the pigment is subjected, in natural environment, to the conditions that promote stereochemical isomerization, such as illumination and elevated temperature. In the present work, the light-induced and heat-induced (the temperature range 35-95 degrees C) isomerization of all-trans zeaxanthin in organic solvent environment has been analyzed by means of the HPLC technique. The 13-cis conformation has been identified as a major one among the isomerization products. The activation energy of the all-trans to 13-cis isomerization has been determined as 83 +/- 4 kJ/mol and the activation energy of the back reaction as 30 +/- 7 kJ/mol. The reaction of isomerization of the all-trans zeaxanthin at 25 degrees C was substantially more efficient upon illumination. Four different wavelengths of light have been selected for photo-isomerization experiments: 450, 540, 580 and 670 nm, corresponding to the electronic transitions of zeaxanthin from the ground state to the singlet excited states: 1(1)Bu+,3(1)Ag-,1(1)Bu- and 2(1)Ag-, respectively. The quantum efficiency of the all-trans zeaxanthin isomerization induced by light at different wavelengths: 450, 540, 580 and 670 nm was found to differ considerably and was in the ratio as 1:15:160:29. The sequence of the quantum efficiency values suggests that the carotenoid triplet state 1(3)Bu, populated via the internal conversion from the 1(3)Ag triplet state which is generated by the intersystem crossing from the 1(1)Bu- state may be involved in the light-induced isomerization. A physiological importance of the isomerization of zeaxanthin in the retina of an eye, photosynthetic apparatus and of the pigment active as a blue light photoreceptor in stomata is briefly discussed.  相似文献   

9.
Two-component monomolecular layers were formed with two xanthophyll pigments, lutein and zeaxanthin and dipalmitoylphosphatidylcholine (DPPC), at the argon-water interface. Analysis of the mean molecular area parameters versus molar fraction of the xanthophyll component shows large overadditivity (ca. 50 A2 in the case of zeaxanthin and 150 A2 in the case of lutein) in the region of low molar fractions of carotenoids (maximum at 5 mol% in the case of zeaxanthin and at 20 mol% in the case of lutein). The experimental values of a mean molecular area are in good agreement with the values expected, based on the additivity rule at high molar percentages of the xanthophylls. Absorption spectroscopy of a single monolayer at the argon-water interface in the UV-Vis region has also been applied to analyze the formation of molecular assemblies of lutein in monomolecular films. The differences in the organization of lutein-DPPC and zeaxanthin-DPPC monolayers are interpreted in terms of the aggregation of xanthophyll pigments in the layers and different orientation of both xanthophylls at the interface. The results are discussed in relation to possible physiological functions of lutein and zeaxanthin in the membranes of the retina of an eye.  相似文献   

10.
Plant products are dietary sources of lutein and zeaxanthin. Lutein and zeaxanthin have been implicated in the protection of age related macular degeneration (AMD) and in cardiovascular diseases. However, xanthophylls and unidentified components (λmax = 423 and 468 nm) in plant products are often not separated well, and affect an accurate quantitative determination of lutein and zeaxanthin. A high performance liquid chromatography (HPLC) system equipped with a Bischoff C30 column and a mobile phase of methanol, methyl-tert-butyl ether (MTBE) and water was used to separate lutein, zeaxanthin and other unidentified components in plant products. Mobile phase A containing methanol, MTBE and water with a ratio of 60:33:7 by volume (1.5% ammonium acetate, NH4Ac), combined with mobile phase B with a ratio of 8:90:2 by volume (1.0% NH4Ac) is optimal for the separation. This method was successfully applied to the quantitative determination of lutein and zeaxanthin in extracts of plant products, such as chlorella, spirulina, celery and mallow.  相似文献   

11.
Absorbance spectra and excitation spectra of chlorophyll a fluoresence were recorded during the light-induced deepoxidation of violaxauthin to zeaxanthin in bean leaves (Phaseolus coccineus) greened under intermittent light. Light minus dark fluorescence excitation difference spectra showed distinct minima at 440, 465, and 500 nm corresponding to maxima in the absorbance difference spectra. Both difference spectra were prevented by the deepoxidase inhibitor dithiothreitol and were inverted when zeaxanthin was epoxidized. The fluorescence excitation difference spectra were successfully modeled by considering the absorbance differences between violaxanthin and zeaxanthin, assuming no energy transfer from the two pigments to chlorophyll a, and accounting for light-induced scattering changes. The pigment stoichiometry and the scattering changes of the simulation were in accordance with experimental data. The results indicate that, in the early stage of leaf development, light absorbed by the cycle pigments violaxanthin and zeaxanthin is not transferred to chlorophyll.  相似文献   

12.
Abstract— The mechanism of action of xanthophyll cycle carotenoids in controlling the quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II (LHCIIb) has been investigated. Auroxanthin, a diepoxy carotenoid with 7 conjugated carbon double bonds, violaxanthin (9 conjugated double bonds) and zeaxanthin (11 conjugated double bonds) have been compared with regard to their effects in vitro on fluorescence quenching and LHCIIb oligomerization. It was found that auroxanthin stimulated fluorescence quenching, similar to the effect of zeaxanthin and in contrast to the inhibition caused by violaxanthin. Auroxanthin caused an increase in the oligomerization of LHCIIb and an increase in relative emission of long-wavelength fluorescence at 77 K. It is concluded that auroxanthin can mimic the effect of zeaxanthin on LHCII, strongly suggesting that the xanthophyll cycle carotenoids control quenching in vitro by an indirect structural effect and not by direct quenching of chlorophyll excited states.  相似文献   

13.
The C-40 xanthophylls zeaxanthin and astaxanthin were confirmed to form radical cations, Car.+, in the electron-accepting solvent chloroform by direct excitation using subpicosecond time-resolved absorption spectroscopy in combination with spectroelectrochemical determination of the near-infrared absorption of Car.+. For the singlets, the S2(1B(u+) state and most likely the S(x)(3A(g)-) state directly eject electrons to chloroform leading to the rapid formation of Car.+ on a timescale of approximately 100 fs; the lowest-lying S1(2A(g)-) state, however, remains inactive. Standard reduction potential for Car.+ was determined by cyclic voltametry to have the value 0.63 V for zeaxanthin and 0.75 V for astaxanthin from which excited state potentials were calculated, which confirmed the reactivity toward radical cation formation. On the other hand, Car.+ formation from the lowest triplet excited state T1 populated through anthracene sensitization is mediated by a precursor suggested to be a solute-solvent complex detected with broad near-infrared absorption to the shorter wavelength side of the characteristic Car.+ absorption. However, ground state carotenoids are able to react with a secondary solvent radical to yield Car.+, a process occurring within 16 micros for zeaxanthin and within 21 mus for astaxanthin. Among the two xanthophylls together with lycopene and beta-carotene, all having 11 conjugated double bonds, zeaxanthin ranks with the highest reactivity in forming Car.+ from either the S2(1B(u+)) or the ground state. The effects of substituent groups on the reactivity are discussed.  相似文献   

14.
Employing isocratic and gradient-elution high-performance liquid chromatography (HPLC) a number of straight-chain fatty acid esters (decanoate, laurate, myristate, palmitate) of violaxanthin, auroxanthin, lutein, zeaxanthin, isozeaxanthin, and beta-cryptoxanthin, prepared by partial synthesis, have been separated on a C18 reversed-phase column. Several chromatographic conditions were developed that separated a mixture of di-fatty acid esters (dimyristate, myristate palmitate mixed ester, dipalmitate) of violaxanthin, auroxanthin, lutein, and zeaxanthin in a single chromatographic run. Hydroxycarotenoids such as lutein, zeaxanthin, and isozeaxanthin that are not easily separated by HPLC on C18 reversed-phase columns, can be readily separated after derivatization with fatty acids and chromatography of their esters. Chromatographic conditions for optimum separation of carotenoids from various classes are discussed.  相似文献   

15.
In plants, excess irradiation can damage the photosynthetic apparatus, although some protective mechanisms exist. The excess energy can be dissipated as thermal energy, and pigments (i.e., carotenoids) also play an important role in protecting the photosynthetic apparatus by epoxidating reactions. Chromatographic analysis of pigment extracts of Gracilaria tenuistipitata shows that zeaxanthin is the major carotenoid in this alga, accounting for up to 82% of total carotenoids. Short-term (55 h) and long-term (10 days) response of the pigments shows that Chl a, β-carotene and zeaxanthin degradation after light increase follows negative exponential trends, while the response of biliproteins is almost linear. Decreasing the irradiance results in a clear saturating response of the synthesis of Chl a and β-carotene after one to two days. Biliprotein synthesis displays a double linear trend, the first one lasting for four days in the cases of both R-phycoerythrin (RPE) and R-phycocyanin (RPC). The response of zeaxanthin is always faster than that of Chl a or biliproteins to changes of irradiance. Our results might indicate the presence of two pools of zeaxanthin in this alga, with different acclimation responses to the changes in the photon flux density.  相似文献   

16.
The structure of a sponge metabolite from Microciona prolifera, previously considered to be (6S)-2,3-didehydro- or 3,4-didehydro-gamma, chi-carotene, has been further studied. Attempted total synthesis of the 3,4-didehydro derivative provided the hitherto unknown gamma, chi-carotene, the synthesis of which is described. Hydrolysis of lutein methanesulfonate diester (dimesylate) gave elimination products possessing the 3,4-didehydro gamma end-group. 1H NMR data for this gamma end-group were identical with those for the sponge carotenoid. The mesylate elimination reaction described may mimic the metabolic formation of the 3,4-didehydro-gamma-carotenoid end-group. In connection with other investigations on functionalized carotenoids we further report the preparation of zeaxanthin and lutein mesylates and their base-catalyzed elimination reactions. SN2 type substitution reactions of zeaxanthin dimesylate with appropriate nucleophiles did not produce beta, beta-carotene, zeaxanthin diacetate or thiozeaxanthin.  相似文献   

17.
The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α‐tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE‐19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell‐reductive activity. A 20 min exposure to visible light and photosensitizer decreased cell viability to ca 42%. Lipophilic antioxidants increased viabilities to ca 70%, 61% and 75% for α‐tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ca 70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mm ascorbate, respectively. A 45 min exposure increased cell death to ca 74% and >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α‐Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate, but did not prevent from ascorbate‐mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate‐mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate, but do not ameliorate its deleterious effects.  相似文献   

18.
Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, β-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-β-apo-8′-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, β-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.  相似文献   

19.
Carotenoid pigments of Erwinia herbicola and a transformed strain of Escherichia coli carrying the carotenoid biosynthesis gene cluster of E. herbicola have been analyzed. Both organisms are capable of making essentially the same carotenoids, indicating that all of the genes required for the biosynthesis of the wild type E. herbicola carotenoids have been transformed intact into E. coli. The major products in both species of bacteria are beta-cryptoxanthin glucoside, zeaxanthin monoglucoside and zeaxanthin diglucoside. These compounds are the first example of secondary, non-allylic carotenoid glucosides. The absolute configuration 3R,3'R for zeaxanthin diglucoside was determined from its circular dichroism spectrum. Both species of bacteria also accumulate small amounts of hydrocarbon carotenes with similar cis/trans isomerization states.  相似文献   

20.
Aiming for better understanding of the large complexity of excited-state processes in carotenoids, we have studied the excitation wavelength dependence of the relaxation dynamics in the carotenoid zeaxanthin. Excitation into the lowest vibrational band of the S2 state at 485 nm, into the 0-3 vibrational band of the S2 state at 400 nm, and into the 2B(u)+ state at 266 nm resulted in different relaxation patterns. While excitation at 485 nm produces the known four-state scheme (S2 --> hot S1 --> S1 --> S0), excess energy excitation led to additional dynamics occurring with a time constant of 2.8 ps (400 nm excitation) and 4.9 ps (266 nm excitation), respectively. This process is ascribed to a conformational relaxation of conformers generated by the excess energy excitation. The zeaxanthin S state was observed regardless of the excitation wavelength, but its population increased after 400 and 266 nm excitation, suggesting that conformers generated by the excess energy excitation are important for directing the population toward the S state. The S2-S1 internal conversion time was shortened from 135 to 70 fs when going from 485 to 400 nm excitation, as a result of competition between the S2-S1 internal conversion from the vibrationally hot S2 state and S2 vibrational relaxation. The S1 lifetime of zeaxanthin was within experimental error the same for all excitation wavelengths, yielding approximately 9 ps. No long-lived species have been observed after excitation by femtosecond pulses regardless of the excitation wavelength, but excitation by nanosecond pulses at 266 nm generated both zeaxanthin triplet state and cation radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号