首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

2.
1,2-Diphenyl-1,2-dimethyldisilanylene-bridged bis-cyclopentadienyl complex[η~5,η~5-C_5H_4PhMeSiSiMePh-C_5H_4]Fe_2(CO)_2(μ-CO)_2(1)was synthesized by a modified procedure,from which the trans-isomer 1b that was pre-viously difficult to obtain has been isolated for the first time.More interestingly,two new regio-isomers[η~5,η~5C_5H_4SiMe(SiMePh_2)C_5H_4]Fe_2(CO)_2(μ-CO)_2(2)and [η~5,η~5-C_5H_4Me_2SiSiPh_2C_5H_4]Fe_2(CO)_2(μ-CO)_2(3)were occa-sionally obtained during above process,the novel structures of which opened up new options for further study ofthis type of Si—Si bond-containing transition metal complexes.The molecular structure of 2 has been determinedby the X-ray diffraction method.  相似文献   

3.
Treatment of the μ(η1)-alkyne complex (η-C5H5)2Rh2(CO)2(CF3C2CF3) with trimethylamine-N-oxide results in mono-decarbonylation to give the μ(η2)- alkyne complex (η-C5H5)2Rh2(μ-CO)(CF3C2CF3). Coordinative addition of a variety of ligands L to the monocarbonyl complex has been achieved at room temperature, and stable adducts (η-C5H5)2Rh2(CO)L(CF3C2CF3) (L  CO, CNBut, PPh3, PMePh2, P(OMe)3, AsPh3, PF3 and PF2(NEt2)) have been fully characterized by infrared and NMR spectroscopy. In each complex, there is a μ(η1)-attachment of the hexafluorobut-2-yne and a trans-arrangement of CO and L. The spectroscopic data establish that there is rapid scrambling of CO and L when L  CNBut. An unstable adduct is formed when (η-C5H5)2Rh2(μ-CO)(CF3C2CF3) is dissolved in pyridine.  相似文献   

4.
Bis(dimethylamino)trifluoro sulfonium Salts: [CF3S(NMe2)2]+[Me3SiF2], [CF3S(NMe2)2]+ [HF2] and [CF3S(NMe2)2]+[CF3S] From the reaction of CF3SF3 with an excess of Me2NSiMe3 [CF3(NMe2)2]+[Me3SiF2] (CF3‐BAS‐fluoride) ( 5 ), from CF3SF3/CF3SSCF3 and Me2NSiMe3 [CF3S(NMe2)2]+‐ [CF3S] ( 7 ) are isolated. Thermal decomposition of 5 gives [CF3S(NMe2)2]+ [HF2] ( 6 ). Reaction pathways are discussed, the structures of 5 ‐ 7 are reported.  相似文献   

5.
The MoMo bond in [C5H5Mo(CO)3]2 is cleaved by ferricenium cations in the presence of additional Group V ligands under photochemical radiation (λmax > 300 nm). The mononuclear cationic complexes [C5H5Mo(CO)2L2]BF4 (L = E(C6H5)3, E = P, As, Sb, Bi; L2 = [(C6H5)2PCH2]2) are obtained in high yield.  相似文献   

6.
New Oxonium Bromochalcogenates(IV) — Synthesis, Structure, and Properties of [H3O][TeBr5] · 3 C4H8O2 and [H3O]2[SeBr6] Dark red crystals of the composition [H3O][TeBr5] · 3 C4H8O2 ( 1 ) were isolated from a saturated solution of TeBr4 in 1,4-dioxane containing a small amount of water. In this compound (space group P21/m, a = 8.922(4) Å, b = 13.204(7) Å, c = 9.853(5) Å, β = 91.82(4)° at 150 K) a square pyramidal [TeBr5]? anion has been isolated for the first time. The coordination sphere of the anion is completed to a distorted octahedron by weak interaction with a dioxane molecule of the cationic system. The [H3O]+ cations are connected to chains by dioxane molecules. At room temperature the compound is stable only in its mother liquor. Crystalline [H3O]2[SeBr6] ( 2 ) (space group Fm3m, a = 10.421(1) Å at 170 K) is a bromoselenous acid of high symmetry. The [H3O]+ ion is only weakly coordinated by Br atoms of the anion. The anions are isolated octahedral [SeBr6]2? units. The structure is isotypic to the K2[PtCl6] structure. Despite being a halogenochalcogen(IV) acid, 2 exhibits a remarkable thermal stability. Both oxonium compounds were characterized by single-crystal X-ray structure analyses. Vibrational spectra of 2 are reported.  相似文献   

7.
Collisional activation spectra of [C8H8]+·, [C8H8]2+, [C6H6]+· and [C6H5]+ ions from fifteen different sources are reported. Decomposing [C8H8]+· ions of ten of these precursors isomerise to a mixture of mainly the cyclooctatetraene and, to a smaller extent, the styrene structure. Three additional structures are observed with [C8H8]+· ions from the remaining precursors. [C8H8]2+., [C8H8]+·, [C6H6]+· and [C6H5]+· ions mostly decompose from common structures although some exceptions are reported.  相似文献   

8.
The compounds [2-(Me2NCH2)C6H4]2SbL (L = ONO2 ( 2 ), OSO2CF3 ( 3 )) and [PhCH2N(CH2C6H4)2]SbL (L = ONO2 ( 5 ), OSO2CF3 ( 6 )) were prepared by reacting [2-(Me2NCH2)C6H4]2SbCl ( 1 ) and [PhCH2N(CH2C6H4)2]SbCl ( 4 ), respectively, with the appropriate silver(I) salt in a 1:1 molar ratio. The new species 2 – 6 were structurally characterized in solution using multinuclear NMR and in the solid state using infrared spectroscopy. The solid-state structures for compounds 2 , 4 and 6, as well as for the hydrolysis ionic product [{2-(Me2N+HCH2)C6H4}{2-(Me2NCH2)C6H4}SbOH][CF3SO3] ( 3h ) were determined using single-crystal X-ray diffraction. Medium to strong intramolecular N→ Sb interactions were observed in all these four compounds, thus resulting in hypercoordinated organoantimony(III) species 14-Sb-6 in 2 and 10-Sb-4 in the cation of 3h and in 4 and 6 . Compounds 1 – 6 and the starting amines PhCH2NMe2 and PhCH2N(CH2C6H4Br-2)2 were investigated as catalysts in the Henry (nitroaldol) addition of nitromethane to benzaldehyde. The activity of compounds 1 – 6 resulted as an effect of the cooperation of the positively charged antimony with the negatively charged nitrogen.  相似文献   

9.
The formation of the previously unknown [(C5H4CPh2)2Ru]2+ dication was established by1H and13C NMR spectroscopy. This cation readiiy hydrolizes to form the monocation, [Ph2(HO)CC5H4RuC5H4CPh2]+. The latter was characterized by NMR spectroscopy and X-ray structural analysis. For comparison, [C5H5RuC5H4CPh2]+PF6 ? was also studied by X-ray structural analysis. The increase in the M-Cα distance and the decrease in the angle of inclination of the CPh2 group to the metal atom in disubstituted ruthenocene compared to those in monosubstituted ruthenocene is related to the presence of a bulky substituent in the second Cp ligand and is likely due to the crystal packing effect. IR spectra and X-ray structural analysis attest to the existence of the OH ? OSO2CF3 hydrogen bond in crystals of the trifluoromethanesulfonate monocation.  相似文献   

10.
From the mass-analysed ion kinetic energy spectra of labelled ions, kinetic energy releases and thermodynamic data, it is proved that protonated n-propylbenzene (1) isomerizes into protonated isopropyl benzene (2). It is also shown that the dissociation of the less energetic metastable ions of (2), leading to [iso-C3H7]+ and [C6H7]+ product ions, is preceded by H exchange. This H exchange involves two interconverting ion-neutral complexes [C6H6, iso-C3H7+] (2π) and [C6H7+, C3H6] (2α).  相似文献   

11.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

12.
Preparation of R4?nPb[Mn(CO)4P(C6H5)3]n Compounds (R?CH3, C6H5; n = 1, 2) As the first examples of organolead manganese carbonyls substituted in the manganese carbonyl ligand compounds of the type R4?nPb[Mn(CO)4P(C6H5)3]n (R?CH3, C6H5; n = 1, 2) have been prepared by the alkali salt method from R4?nPbCln and NaMn(CO)4P(C6H5)3. (C6H5)2Sn[Mn(CO)4P(C6H5)3]2 has been gained by the same method and also by thermal ligand exchange. According the IR data the ligand P(C6H5)3 is trans to the tetrahedrally surrounded lead. In solution to compounds are monomeric.  相似文献   

13.
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds.  相似文献   

14.
The complex [C5H5RhH(C2H4)PMe3]BF4 (I) reacts with NaF and NaCN by deprotonation to give C5H5Rh(PMe3)C2H4 but with NaCl, NaBr and NaI the ethylrhodium compounds C5H5RhC2H5(PMe3)X (II–IV) are obtained. The reactions of I with CO and PPri3 yield the BF4 salts of the cations [C5H5RhH(CO)PMe3]+ and [C5H5RhH(PPri3)PMe3]+ (V, VI), respectively, from which the uncharged complexes C5H5Rh(CO)PMe3 (VII) and C5H5Rh(PPRi3)PMe3 (VIII) are prepared. The carbonyl compound VII is also accessible either from C5H5Rh(CO)2 and PMe3 or from C5H5Rh(PMe3)2 and CO. The reaction of I with ethylene leads to the BF4 salt of the cation [C5H5RhC2H5(PMe3)C2H4]+ (X) which on treatment with PMe3 forms the complex [C5H5RhC2H5(PMe3)C2H4PMe3]BF4 (XI). The compound [C5H5RhH(C2H4)PPri3]BF4 (XII) reacts with NaI by insertion to yield C5H5RhC2H5(PPri3)I (XIII) whereas with PPri3 the salt [C5H5RhH(PPri3)2]BF4 (XIV) is produced. The bis(triisopropylphosphine) complex C5H5Rh(PPri3)2 (XVI) is obtained from XIV and NaH.  相似文献   

15.
Attempts to prepare Fe(CO)5+ from Ag[Al(ORF)4] (RF=C(CF3)3) and Fe(CO)5 in CH2Cl2 yielded the first complex of a neutral metal carbonyl bound to a simple metal cation. The Ag[Fe(CO)5]2+ cation consists of two Fe(CO)5 molecules coordinating Ag+ in an almost linear fashion. The ν(CO) modes are blue‐shifted compared to Fe(CO)5, with one band above 2143 cm?1 indicating that back‐bonding is heavily decreased in the Ag[Fe(CO)5]2+ cation.  相似文献   

16.
The restricted rotation of the olefin ligands L = dimethyl maleate and dimethyl fumarate in complexes of the type C5H5Mn(CO)2L and C5H5Cr(CO)-(NO)L, respectively, has been investigated on the basis of their temperature-dependent 1H NMR spectra. The olefinic ligand is arranged preferably in a position where the CC double bond is parallel to the plane of the cyclopentadienyl ring. The possible stereoisomers are discussed using this model. The 1H NMR spectra of C5H5Cr(CO)(NO)(trans-CH3OOCCHCHCOOCH3) provide direct evidence that the configuration (R or S) at the metal is stable up to 120°C, and that the restricted motion of the olefin is exclusively rotation around the metal—olefin bond. The activation barriers of the olefin rotation are found to be appreciably lower in the C5H5Mn(CO)2L complexes (ΔG(TC) 11–12 kcal mol?1) than in the isoelectric C5H5Cr(CO)(NO)L compounds (ΔG(TC) 15–20 kcal mol?1).  相似文献   

17.
Complexes of formula (η-C5H52Rh2{CF3C2CF3 · RNCO} have been prepared by three methods, from reactions between organic isocyanates and (η-C5H5)2Rh2(CO)(CF3C2CF3) or (η-C5H5)2Rh2(CO)2(CF3C2CF3); by treatment of (η-C5H5)2Rh2(CO)(CF3C2CF3) with organic azides; and by oxidation with Me3NO of the organic isocyanide in (η-C5H5)2Rh2(CO)(CNR)(CF3C2CF3). The crystal and molecular structure of the complex (η-C5H5)2Rh2{CF3C2CF3 · RNCO} with R = Ph has been determined from single crystal X-ray diffraction data. This reveals that the isocyanate has condensed with the hexafluorobut-2-yne to form an amide ligand of the form C(CF3)C(CF3)C(=O)N(R); this bridges the two rhodium atoms in a μ2η3-manner.  相似文献   

18.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

19.
C7H8Mo(CO)3 reacts with HBF4 and HCl by protonation of the ring ligand and formation of [C7H9Mo(CO)3]BF4 (I) and C7H9Mo(CO)3Cl (II), respectively. The compounds are characterised by means of their IR and NMR data. The reaction of I with P(C6H5)3 does not lead, as expected, to [C7H9Mo(CO)3P(C6H5)3]BF4 (III) but to the phosphonium salt [C7H9P(C6H5)3]BF4 (IV), i.e. nucleophilic addition of the phosphine at the cycloheptadienyl group takes place. The structure of IV has been determined by 13C NMR measurements.  相似文献   

20.
The title compounds, poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­methanesulfonato‐lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­acetato‐dilithium(I)‐μ3‐tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one‐dimensional polymer chains. Both structures contain five‐coordinate Li+ cations coordinated by a tridentate diglyme [bis(2‐methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2]? (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one‐dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3? and CF3CO2? anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号