首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and NMR Spectra of λ5-Diphosphets. Structure of 2,4-Diphenyl-1,1,3,3-tetrakis (diethylamino)-1λ5, 3λ5-diphosphete Preparation, properties, and n.m.r. spectra of C2H5PF2[N(C2H5)2]2, CH2?PF[N(C2H5)2]2, and the diphosphetes {RC?P[N(C2H5)2]2}2 (R) ? H ( 5a ), CH3 [( 5b )] are described. The λ5-diphosphete {HC?P(NR2)2}2 (R ? CH3) reacts with BF3 · O(C2H5)2 to give which is transformed into by n-C4H9Li. The crystal and molecular structure of 2,4-diphenyl-1,3,3-tetrakis(diethylamino)-1λ5,3λ5-diphosphete 2 are reported and discussed.  相似文献   

2.
From the crude product of the synthesis of the dithiadiphosphetane [RP(S)S]2 (with R = 2,4,6-iPr3C6H2), the trans-oxathiadiphosphetane has been isolated, C30H40OP2S3. X-ray structure analysis and mass spectroscopic investigations give unequivocal evidence for this structure: monoclinic, C2/c (no. 15), a = 13.066(8), b = 21.726(8), c = 12.070(6) Å, β = 103.54(10)°, V = 3331 Å3, Z = 4, and Dc = 1.158 g/cm3. The asymmetric unit consists of half the formula unit. Solid-state 31P NMR spectra give information about the chemical shift anisotropy. Results of IGLO calculations of the 31P nuclear magnetic shielding tensor agree satisfactorily with the experimental data. Monitoring the reaction of several dithiadiphosphetanes with benzophenone in solution by 31P NMR spectroscopy indicates that additional oxathiadiphosphetanes as well as thiotrimetaphosphonates are present. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
[Cu(C12H8N2)(C4H4O4)(H2O)]2 · C4H6O4 was prepared by the reaction of succinic acid, CuCl2 · 2 H2O, 1,10‐phenanthroline (phen = C12H8N2), and Na2CO3 in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 7.493(1), b = 9.758(1), c = 13.517(1) Å; α = 68.89(1)°, β = 88.89(1)°, γ = 73.32(1)°, Z = 1, R = 0.0308, wR2 = 0.0799 for 3530 observed reflections (F ≥ 2σ(F ) out of 3946 unique reflections) consists of hydrogen bonded succinic acid molecules and succinato bridged 1 D zipperlike supramolecular [Cu(phen)(C4H4O4)2/2(H2O)]2 double chains based on 1 D π‐π stacking interactions between the chelating phen systems at distances of 3.71 Å and 3.79 Å. The Cu atoms are fivefold trigonal bipyramidally coordinated by two N atoms of the bidentate chelating phen ligand and three O atoms of one water molecule and two bidentate bridging succinate ligands. The water O atom and one phen N atom are at the apical positions (equatorial: d(Cu–O) = 1.945, 2.254(2) Å, d(Cu–N) = 2.034(2) Å; axial: d(Cu–O) = 1.971(2) Å, d(Cu–N) = 1.995 Å).  相似文献   

4.
Synthesis of Fluoro-λ5-monophosphazenes and Fluoro-1,3-diaza-2λ5,4λ5-diphosphetidines by Means of the Staudinger Reaction 35 Tetrafluoro- and 2 difluorodiaza-diphosphetidines as well as 4 difluoro- and 30 monofluoro-λ5-monophosphazenes were prepared by the Staudinger reaction between tervalent phosphorus fluorides, RnPF3?n (n = 1, 2; R = R2N, (CH2)5N, O(CH2)4N, RO, (CH2O)2, alkyl, aryl) and phenylazides, X? C6H4N3 (X = H, 4-CH3, 4-Cl, 4-Br, 4-NO2, 3-NO2). PF3 does not react with phenylazide The influence of substituents on the structure of the reaction products is discussed. Kinetic measurements allowed to determine the constants λPI of the substituents (CH2)5N, O(CH2)4N and R(C6H5)N (R = CH3, C2H5, n-C4H9).  相似文献   

5.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

6.
P,P′-(2,5-Dihydroxy-3,6-dimethyl-2,5-dioxo-2λ5,5λ5-[1,4,2,5]dioxadiphosphinane-2,5-diyl)-bis-phosphonic Acid The tetrahydrate 1 of the title compound crystallizes in the monoclinic space group P21/c with a = 845.8, b = 1 098, c = 981.7 pm, β = 113.02° and Z = 2. The anions of the oxonium compound (H3O+ · H2O)2(C4H10O12P42?) are layered by hydrogen bridges. The 1H, 13C and 31P NMR spectra (4 and 5 spin systems) are discussed.  相似文献   

7.
Reaction of Cyclopentadienyl Substituted Molybdenum(V) Tetrachlorides with LiPH(2,4,6-Bu C6H2) and KPPh2(Dioxane)2. Crystal Structures of [Cp0Mo(μ? Cl)2]2 and [Cp Mo2(μ? Cl)3(μ? PPh2)] (Cp0 = C5Me4Et) The reaction of [Cp0Mo(CO)3]2 (Cp0 = C5Me4Et) and [Cp′Mo(CO)3]2 (Cp′ = C5H4Me) with PCl5 in CH3CN furnishes the Mo(V) complexes Cp0MoCl4(CH3CN) 1 and Cp′MoCl4(CH3CN) 2 in good yields. While 1 and 2 are reduced by LiPH(2,4,6-BuC6H2) to the Mo(III) complexes [Cp0Mo(μ? Cl)2]2 3 and [Cp′Mo(μ? Cl)2]2 4 , the reaction of 1 with KPPh2(dioxane)2 yields the reduction/substitution product [CpMo2(μ? Cl)3(μ? PPh)] 5 in low yield. 1 – 4 were characterized spectroscopically (i.r., mass, 3 and 4 also n.m.r.). An X-ray crystal structure determination was carried out on 3 and 5. 3 crystallizes in the triclinic space group P1 (No. 2) with a = 8.278(4), b = 12.508(7), c = 12.826(7) Å, α = 86.78(5), β = 81.55(2), γ = 75.65(4)°, V = 1 272.4 Å3 and two formula units in the unit cell (data collection at ? 67°C, 4 255 independent observed reflections, R = 2.9%); 5 crystallizes in the triclinic space group P1 (No. 2) with a = 11.536(8), b = 12.307(9), c = 13.157(9) Å, α = 91.41(6), β = 100.42(5), γ = 112.26(6)°, V = 1 688.7 Å3 and two formula units in the unit cell (data collection at ? 60°C, 6 147 independent observed reflections, R = 4.9%). The crystal structure of 3 shows the presence of centrosymmetric dimeric molecules with four bridging chloro ligands. In 5, two Mo atoms are bridged by three chloro ligands and one PPh2 ligand. The Mo? Mo bond length in 3 and 5 (2.600(2), 2.596(2) Å and 2.6388(8) Å) is in agreement with a Mo? Mo bond.  相似文献   

8.
Two coordination polymers {[Cd(phen)](C6H8O4)3/3} ( 1 ) and {[Cd(phen)](C7H10O4)3/3} · 2H2O ( 2 ) were structurally characterized by single crystal X‐ray diffraction methods. In 1 (C2/c (no. 15), a = 16.169(2)Å, b = 15.485(2)Å, c = 14.044(2)Å, β = 112.701(8)°, U = 3243.9(7)Å3, Z = 8), the Cd atoms are coordinated by two N atoms of one phen ligand and five O atoms of three adipato ligands to form mono‐capped trigonal prisms with d(Cd‐O) = 2.271‐2.583Å and d(Cd‐N) = 2.309, 2.390Å. The [Cd(phen)] moieties are bridged by adipato ligands to generate {[Cd(phen)](C6H8O4)3/3} chains, which, via interchain π—π stacking interactions, are assembled into layers. Complex 2 (P1¯(no. 2), a = 9.986(1)Å, b = 10.230(3)Å, c = 11.243(1)Å, α = 66.06(1)°, β = 87.20(1)°, γ = 66.71(1)°, U = 955.7(2)Å3, Z = 2) consists of {[Cd(phen)](C7H10O4)3/3} chains and hydrogen bonded H2O molecules. The Cd atoms are pentagonal bipyramidally coordinated by two N atoms of one phen ligand and five O atoms of three pimelato ligands with d(Cd‐O) = 2.213—2.721Å and d(Cd‐N) = 2.329, 2.372Å. Through interchain π—π stacking interactions, the {[Cd(phen)](C7H10O4)3/3} chains resulting from [Cd(phen)] moieties bridged by pimelato ligands are assembled in to layers, between which the hydrogen bonded H2O molecules are sandwiched.  相似文献   

9.
Condensation polymerization of phosphonates through formation of P? O? P linkages has been achieved by (1) volatilization of methyl chloride from mixtures of CH3P(O)Cl2 with CH3P(O)(OCH3)2; (2) volatilization or chemical removal of water from CH3P(O)(OH)2; and (3) volatilization of HCl from mixtures of CH3P(O)Cl2 with CH3P(O)(OH)2 or C6H5P(O)Cl2 with C6H5P(O)(OH)2. Depending on the proportions of the reagents, the polymerization products consist of various mixtures of chain molecules of the type \documentclass{article}\pagestyle{empty}\begin{document}${\rm X \hbox{--} P}({\rm O})({\rm R})\rlap{--}[{\rm O \hbox{--} P}({\rm O})({\rm R})\rlap{--}]_n {\rm X}$\end{document} for R = CH3 and X = OCH3, Cl, or OH, or for R = C6H5, x = Cl or OH. 31P nuclear magnetic resonance (NMR) was used to investigate both the polymethylpolyphosphonates and the polyphenylpolyphosphonates; and 1H NMR of the CH3P and CH3O moieties was also used to study the polymethylpolyphosphonates. In the methoxyl-terminated polymethylpolyphosphonates, which was the system studied most extensively, no detectable amounts of cyclic molecules were found at equilibrium, but a crystalline methylphosphonic anhydride, CH3PO2, exhibited some ring structures. The equilibrium size distributions gave evidence that the sorting of the mono- and difunctional phosphorus-based units making up the oligomeric chains is affected by neighboring units. Kinetic measurements demonstrated that the condensation polymerization is a complicated process involving considerable scrambling of terminal groups with bridging oxygen atoms.  相似文献   

10.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis.  相似文献   

11.
The crystal structure of Di-μ-sulfato-μ-hydroxo-bis[triamminecobalt(III)] sulfate 8-hydrate has been determined from three-dimensional x-ray data collected by counter techniques. The structure was refined using 2515 independent reflections and the refinement converged to a conventional R factor (on F) of 3.8%. The compound crystallizes in the monoclinic space group C—P2/a, a = 14.122(9), b = 9.858(2), c = 18.81(2) Å, β = 139.3(4), Z = 2, dobsd = 2.086 g/cm3 and dcalc = 2.14 g/cm3. Within the cation two bidentate SO4-ligands form bridges between two cobalt atoms. There are two types of S? O bonds (1.50 Å endocyclic, 1.45 Å exocyclic).  相似文献   

12.
Reaction of [MoCo(CO)5(PPh3)25-C5H5)] (1) with diphenylacetylene in tetrahydrofuran at 50 °C yielded two heterobimetallic compounds, [MoCo(CO)4.(PPh3){μ-PhC ? CPh}(η5-C5H5)] (4) and [MoCo(CO)5{μ-PhC ? CPh} (η5-C5H5)] (5). However, an unexpected product, Co(CO)2(μ-CO)(μ:η24-C4Ph4)Co(CO)2(PPh3) (6), was observed while attempting to grow the crystals for structural determination of 4. The X-ray crystal structure of 6 was determined: triclinic, $ {\rm P}\bar 1 $, a = 11.654(2) Å, b = 12.864(2) Å, c = 13.854(2) Å, α = 89.67(2)°, β = 86.00(2)°, γ= 83.33(2)°, V = 2057.9(6) Å3 Z=2. In 6, two cobalt fragments are at apical and basal positions of the pseudo-pentagonal pyramidal structure, respectively. The electron count for the apical cobalt fragments is 20, which is rather unusual. It is believed that 6 was formed after the fragmentation and recombination of the fragmented species of 4.  相似文献   

13.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

14.
The reaction of the betain‐like compound O2C2(PPh3)2 ( 1 ) with [(cod)PtX2] in THF solution gives the salt‐like compounds (HC{PPh3}2)[(η3‐C8H11)PtX2] ( 3 , X = I; 4 , X = Cl) in about quantitative yields. The new η3‐bonded C8H11 ligand is the result of a proton transfer from the coordinated cod ligand to 1 with subsequent release of CO2. The X‐ray analysis of 3 shows the presence of two isomers in a 60:40 ratio, which differ in the bonding of the C8H11 ligand. 3 crystallizes in the triclinic space group with the unit cell dimensions a = 1091.7(1), b = 1141.5(1), c = 1649.4(2) pm; α = 80.34(1)°, β = 83.62(1)°, γ = 89.03(1)°, V = 2013.7(4)·106 pm3, Z = 2.  相似文献   

15.
Direct Synthesis of Orthometallated Ketones of the Type RCO(o-C6H4)Mn(CO)4?nLn (R = Alkyl and Aryl Groups, n = 0, 1, 2, L = Ligand) The starting materials of the type RMn(CO)5?nLn und (C6H5)2 Hg react to the products of the type RCO(o-C6H4)Mn(CO)4?nLn[n = 0, R = Ch3, C2H5, C3H7, C6H5,CH2; R = C6H5, n = 1, L = E(C6H5)3, E = P, As, Sb; R = C6H5, n = 2, L = P(OR′)3, R′ = C6H5, CH3, C2H5, C3H7]. Steps of their complex reaction pathway are proposed. These orthometallated substances have been characterized by means of 1H-n.m.r., i.r. and u.v. spectroscopic measurements. The determination of the molecular structure of the two compounds RCO(o-C6H4)Mn(CO)3L [R = C2H5, L = CO; R = C6H5, L = As(C6H5)3] show that both contain a planar heterocyclic five-membered ring of the type .  相似文献   

16.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

17.
Organometallic Compounds of the Lanthanides. LIII. (C5H5Gd)52-OCH3)43-OCH3)45-O) and [Na2(tC4H9OGd)43-OtC4H9)86-O)], two New Alkoxi Gadolinium Clusters with Interstitial Oxygen Gadolinium trichloride reacts in tetrahydrofurane with cyclopentadienyl sodium and two equivalents of sodium methoxide with formation of (C5H5Gd)52-OCH3)43-OCH3)45-O) ( 1 ), and with potassium tert-butoxide with formation of [Na2(tC4H9OGd)43-OtC4H9)86-O)] ( 2 ). The X-ray structure of 1 shows a tetragonal pyramide build up by five gadolinium atoms, containing an oxygen atom in the center of the base and eight bridging methoxo groups. The structure of 2 consists of an oxygen centered octahedron build up by two sodium and four gadolinium atoms, connected by eight bridging tert-butoxy groups and four terminal butoxides. The monoclinic crystals of 1 , space group I2/a have the following crystallographic data: a = 2 276.9(5) pm, b = 2 063.1(6) pm, c = 3 152.2(3) pm, β = 90.7(1)°, Z = 12, Dcalcd 1.85 g · cm?3, R = 0.0519. 2 crystallizes tetragonal, space group I4/mmm with a = 1 728.5(4) pm, b = 1 031.0(3) pm, Z = 2, Dcalcd 1.69 g · cm?3, R = 0.0682.  相似文献   

18.
Synthesis and Crystal Structure of meso-(1,2,3-Tricyclohexyltriphosphane-1,3-diyl)zirconocene(IV), Cp2 (Cp = η5?C5H5, Cy = C6H11) Cp2ZrCl2 reacts with Li(THF)2PHCy (Cy = C6H11) to yield the metallacyclic compound Cp2 1. , The 31P{1H} NMR spectrum of 1 , shows a coupling pattern for an A2X system, indicating the presence of only the meso-forms in solution, which are also present in the solid state. 1 , crystallizes in the monoclinic space group P21/n (No. 14) with a = 12.984(8), b = 9.241(7), c = 23.05(1) Å, β = 93.48(4)°, V = 2760.1 Å3 and four formula units in the unit cell (2718 independent observed reflections, R = 7.3%). The central ZrP3 ring in 1 , is almost planar. The Zr? P bond lengths of 2.618(4) and 2.628(4) Å are nearly identical.  相似文献   

19.
Tricarbonyl(fulvene)chromium complexes react with anionic nucleophiles to give functionally substituted cyclopentadienyl derivatives. The nucleophilic attack occurs at the exocyclic carbon atom of the fulvene ligand. Addition of PPh2 to (η6-6,6-dimethylfulvene)Cr(CO)3 (1) yields the novel anion [(η5-C5H4C(CH3)2PPh2)Cr-(CO)3], which can be isolated as a K+, (C2H5)4N+, (C6H5)4P+, or Tl+ derivative (2–5). The potassium salt of the uncoordinated C5H4C(CH3)2PPh2 anion (7) is obtained by treatment of 6,6-dimethylfulvene with KPPh2·2C4H8O2. Similarly, NaC5H5 reacts with 1 to give Na[(η5-C5H4C(CH3)2C5H5)Cr(CO)3] (8). The reactions of (6-dimethylaminofulvene)Cr(CO)3 (15) with nucleophiles are accompanied by elimination of dimethylamine. Addition of Ph3P=CH2 to 15 gives an unstable product, but after reaction of 6-dimethylaminofulvene with Ph3P=CH2, the free ligand C5H4=CHCH=PPh3 (17) can be isolated in moderate yields. Deeply colored anions of the type [(η55-C5H4C(R)=C5H4)Cr2(CO)6] (R = H, N(CH3)2) are synthesized by reaction of 15 or (6-dimethylamino-6-methylthiofulvene)Cr(CO)3 with NaC5H5 and subsequent complexation of the mononuclear intermediate with (CH3CN)3Cr(CO)3. In addition, the synthesis of the new fulvene complexes [C5H4=CH(CH=CH)2N(CH3)Ph]M(CO)3 (23, 24; M = Cr, Mo) is described. The investigation is extended to α-ferrocenylcarbenium ions, which are isoelectronic with (fulvene)Cr(CO)3 complexes. [(η5-C5H5)Fe(C5H4CPh2)]+ BF4 (25) adds tertiary phosphines at the exocyclic carbon atom to give phosphonium salts of the type [(η5-C5H5)Fe(C5H4CPh2PR3)]+BF4. A CO-substititution product of a tricarbonyl (fulvene)chromium complex is obtained for the first time by irradiation of (η6-6,6-diphenylfulvene)Cr(CO)3 in the presence of PPh3. In addition, an improved synthesis of the (CH3CN)3M(CO)3 complexes (M = Cr, Mo, W) is reported.  相似文献   

20.
Reactions of monosubstituted alkenes RCH = CH2 and [Re(η5–C5H5)(CH2Cl2) (NO)(PPh3)]+BF give complexes ([Re(η5–C5H5))(CH2?CHR)(NO) (PPh3)]+BF ( 1a–g ) in 63–99% yields as mixtures of (RS,SR)- and (RR,SS)-diastereoisomers ( 1a (R = Me), 66:34; 1b (R = Pr), 63:37; 1c (R = PhCH2), 70:30; 1d (R = Ph), 75:25; 1e (R = i-Pr), 64:36; 1f (R = t-Bu), 84:16; 1g (R = Me3Si), 69:31; Scheme 2). These differ in the C?C enantioface bound to the chiral Re fragment. In most cases, the analogous reactions of RCH?CH2 and [Re(η5–C5H5) (C6H5Cl)(NO)(PPh3)]+ BF give comparable results. When 1a – e , g are heated in PhCl at 95–100°, equilibration to 96:4, 97:3, 97:3, 90:10, > 99:< 1, and > 99:< 1 (RS,SR)/(RR,SS) mixtures occurs (79–99% recoveries; Tables 1 and 2). Thus, thermodynamic enantioface-binding selectivities are much higher than kinetic binding selectivities. This phenomenon is analyzed in detail. A crystal structure of (RS,SR)- 1e (monoclinic, P21/c, a = 10.256(1) Å. b = 17.191(1) Å, c = 16.191(1) Å, β = 101.04(1)°, Z = 4) shows that the Re–C(1)–C(2) plane (see Fig.2) is nearly coincident with the Re–P bond (angle 15°), and that the i-Pr group is ‘syn’ to the nitrosyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号