首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   

2.
Gel formation in free-radical polymerization via chain transfer to polymer, recombination termination, and terminal branching due to either chain transfer to monomer or disproportionation termination is investigated using the method of moments. It is found that no gel can possibly form in the systems consisting of initiation, propagation, and one of the above reactions. However, systems with the following combination of reactions are found to be capable of gelling. They are: chain transfer to polymer + recombination termination; chain transfer to polymer + terminal branching due to disproportionation termination; and terminal branching due to transfer to monomer + recombination termination. Systems with the following combination of reactions are incapable of gelling; transfer to polymer + terminal branching due to transfer to monomer; and terminal branching due to disproportionation termination + recombination termination. An examination of the gelation mechanisms reveals that the formation of multivinyl macromonomers during the course of polymerization is the reason that systems involving terminal branching gel. Sol/gel diagrams are generated to give critical kinetic parameters required for gelation. It is found that terminal branching does not always promote gelation due to the adverse effect on chain length through chain transfer to monomer and termination by disproportionation, reactions which generate terminal double bonds. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Data are given on the catalytic activity of a series of cobalt coordination compounds with macrocyclic and acyclic Ligands of different structures in radical polymerization reactions of methacrylic monomers. The influence of various factors (especially the structure of the ligand) on the manifestation of catalytic properties of the compounds studied is discussed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 3, pp. 317–322, May–June, 1987.The authors wish to express their gratitude to E.-G. Eger for kindly providing samples of compound VI, VII, and IX and also to I. P. Rudakova, for the sample of compound X.  相似文献   

4.
Information is presented on the catalytic properties of macrocyclic and polychelate complexes of cobalt in the reaction of methyl methacrylate polymerization. The catalytic activities of these compounds are compared with their donor-acceptor and redox properties.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 6, pp. 698–704, November–December, 1989.The authors wish to express their appreciation to E.-G. Eger for kindly furnishing samples of the cobalt-alkyl and nickel compounds.  相似文献   

5.
6.
柴云  许凯  李世豪  张普玉 《化学研究》2019,30(2):202-210
RAFT(Reversible addition-fragmentation chain transfer,可逆加成-断裂链转移)自由基存在链增长自由基与链转移剂(RAFT试剂)之间的可逆蜕化转移,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成,受到众多高分子研究者的关注,是一种发展较快的可控/活性聚合技术.本文在简要介绍了RAFT聚合发展历程基础上,综述了RAFT聚合反应机理,RAFT试剂的结构及其对聚合性能的影响,RAFT试剂与单体的匹配性,RAFT聚合实施方法等.同时也对RAFT聚合反应的发展进行了展望.  相似文献   

7.
A new kinetic scheme for chain transfer to monomer in the anionic polymerization of hydrocarbon monomers is presented. The scheme agrees with generally accepted views on the chemical mechanism of carbanionic reactions better than the one used previously. It is suggested that the most probable path of the transfer reaction is the proton abstraction from the side group of the monomer, the terminal double bond of the monomer molecule remains unchanged, and therefore the intermediate species can participate in succeeding reactions as a macromonomer. The discrepancy between the predictions of the proposed scheme and of the previous one concerning the molar characteristics of polymers are discussed and the ways to establish the true mechanism of transfer in particular systems are suggested.  相似文献   

8.
Atom transfer radical polymerization conditions with copper(I) bromide/2,2-bipyridine (Cu/2,2-bpy) as the catalyst system were employed for the homopolymerization and random copolymerization of 1-phenoxycarbonyl ethyl methacrylate (PCMA) with methyl methacrylate (MMA). Temperature studies indicated that the polymerizations occurred smoothly in bulk at 110 °C. Poly(PCMA)(polydispersity index=1.27) homopolymer was characterized and then used as macroinitiator for increasing its molecular weight. The homopolymerization of PCMA was also carried out under free radical conditions using 2,2-azobisisobutyronitrile as an initiator.The monomer and polymers were characterized by FT-IR and 1H and 13C-NMR techniques. The glass transition temperatures, the solubility parameters and average-molecular weights of the polymers were determined. Thermal stabilities of the polymers were given as compared with each other by using TGA curves. Thermal degradation products of poly(PCMA)s obtained by ATRP and free radical polymerization were compared with each other by using 1H-NMR technique.  相似文献   

9.
综述了活性/可控自由基聚合中的可逆加成-断裂链转移(RAFT)自由基聚合研究进展;总结了RAFT试剂、RAFT聚合反应条件、RAFT聚合物及其结构形貌的最新研究进展;指出RAFT自由基聚合反应已被作为重要方法之一用于合成具有特定分子结构的聚合物.  相似文献   

10.
11.
The role of monomer in catalytic chain transfer polymerization was studied by determination of the chain transfer constants of the tetraphenyl derivative of cobaloxime boron fluoride (COPhBF) in methyl methacrylate at 60°C varying the monomer concentration instead of the COPhBF concentration as is common practice. Toluene and tert‐butyl acetate were used as diluents in these studies and it was found that the chain transfer constants obtained in the present studies were not significantly different from those observed in conventional experiments. These results suggest the absence of a direct participation of monomer molecules in the hydrogen abstraction step in catalytic chain transfer.  相似文献   

12.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

13.
14.
Poly(butyl acrylate) (PBuA) of high molecular weight was synthesized by atom transfer radical polymerization (ATRP) in ethyl acetate. Whereas for low molecular weight polymers, a linear increase of the number‐average molecular weight, Mn, versus conversion and narrow molecular weight distributions indicate the suppression of side reactions, a downward curvature in the plot of Mn versus conversion was observed for high molecular weights (Mn > 50 000). This effect is explained by chain transfer reactions, leading to branched polymers. GPC measurements with a viscosity detector give evidence for the branched structure of high molecular weight polymers obtained in ATRP. In addition, transfer to solvent or monomer is likely to occur.  相似文献   

15.
《Comptes Rendus Chimie》2003,6(11-12):1375-1384
Miniemulsion polymerizations of styrene in the presence of two reversible addition–fragmentation chain-transfer (RAFT) agents were studied. The rates were significantly retarded by the presence of a RAFT agents S-(thiobenzoyl)thioglycolic acid, 1, or dithiobenzoic acid 1-phenylethyl ester, 2. Control in miniemulsion polymerization is not as good as for bulk polymerizations. The miniemulsions could also be stabilized against Ostwald ripening by a polymer terminated by a dithiobenzoic moiety. In this case, the polymerization was not controlled because of the generation of renucleated particles. To cite this article: I. Uzulina et al., C. R. Chimie 6 (2003).  相似文献   

16.
A novel functional monomer incorporating quinoline derivative moiety as the side group, 2-[4-(2,7,7-trimethyl-3-ethoxycarbonyl-5-oxo-1,4,5,6,7,8-hexhydricquinoline)phenoxyl] ethylmethacrylate (HQPEMA), was synthesized and polymerized utilizing atom transfer radical polymerization (ATRP) technique. 2-(4-Chloromethylphenyl)benzoxazole (CMPB) and CuCl/PMDETA were used as the initiator and catalyst, respectively. GPC, 1H NMR and fluorescent emission spectroscopy were conducted for characterization of polymers. The linear increase of number average molecular weight (Mn) versus conversion and the relatively narrow molecular weight distribution (Mw/Mn) of the obtained polymers confirmed that ATRP of HQPEMA was carried out successfully. In addition, the fluorescence “structural self-quenching effect” was observed in the DMF solution of the monomer HQPEMA, which bearing both electron-donating chromophore group and electron-accepting CC bond. We also found that the fluorescence properties of the newly obtained polymers containing quinoline chromophore depended on both the monomer concentration in solution and the polarity of solvents. The emission of the polymer film showed that the emission peak maxima of the polymer film shifted 50 nm towards high wavelength with respect to the polymer in DMF solution due to the intermolecular or intramolecular interactions of the polymer chains.  相似文献   

17.
The kinetics and mechanism of the initiation and reinitiation of free radical polymerization is reviewed. The importance of understanding the kinetics, specificity and efficiency of initiation and chain transfer when predicting polymerization kinetics and polymer composition is highlighted. These factors are particularly important when making low molecular weight polymers and in living or controlled polymerization processes. Examples of RAFT polymerization and catalytic chain transfer are provided.  相似文献   

18.
Polystyrene with random long chain branches has been difficult to prepare. A new approach using small amounts of chain-transferring monomers to copolymerize with styrene free radically was examined in this work. Of the several comonomers examined, vinylbenzylthiol yielded polystyrene with branched structure. But because of the high chain trnsfer constant, the branches occurred mainly in the low-molecular-weight end of the distribution. As a side interest, vinylbenzylthiol was found to be an effective agent for the broadening of molecular weight distribution.  相似文献   

19.
Understanding the influence of salt/counterion on atom transfer radical polymerization (ATRP) is important to optimize the conditions for ATRP of ionic monomers, such as ionic liquid monomer. This article reports the results of a systematical investigation of the variables associated with ATRP in the presence of different types and amounts of salts, solvents, ligands, and monomers. A series of control ATRP experiments were conducted under various polymerization conditions. The kinetics of the polymerizations, the molecular weight, and molecular weight distribution of the formed polymers were studied by nuclear magnetic resonance and gel permeation chromatography. The results indicated that all of the studied variables influenced the ATRP process to different degrees. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2175–2184  相似文献   

20.
In this work the minimum reaction time was studied for a specific final monomer conversion and number-average chain length by adjusting the amount of initial initiator concentration in the presence of a fixed amount of chain transfer agent at the best isothermal temperature. A new method for the determination of the best initial initiator concentration ([I]0) and isothermal temperature (T) in the presence of chain transfer agent was developed by the application of a simple optimization algorithm, based on the Lagrangian multiplier, to the basic free radical kinetics. Numerical examples for the polymerization of styrene are presented. It is shown that in the presence of a fixed amount of chain transfer agent the best isothermal policy for minimum time would deviate from dead-end polymerization. As the concentration of chain transfer agent increases, a stronger deviation from dead-end polymerization is observed. It was found that for a given pair of desired conversion and number-average chain length the usage of a chain transfer agent would result in a longer reaction time. The results give insights into operation of batchwise bulk free radical polymerization for minimum reaction time under isothermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号