首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Scattering of simple harmonic long waves by a cylindrical island mounted on a conical shoal in an otherwise open sea of constant depth is solved analytically based on the shallow-water wave (long-wave) theory. The new analytical solution not only confirms some conclusions and conjectures previously drawn from purely numerical studies, such as those showing how the slope of the shoal affects the amplification of the ocean waves around the coastline of islands, but also provides another useful check for numerical model developers.  相似文献   

2.
A finite and infinite element model is derived to predict wave patterns around a semi-infinite breakwater in water of constant depth. Both circular and square meshes of elements are used. The wave theory used is that of Berkhoff. The appropriate boundary conditions for finite and infinite boundaries are described. The singularity in the velocity at the breakwater tip is modelled effectively using the technique of Henshell and Shaw originally developed in elasticity. The results agree well with the analytical solution. In addition the problem of waves incident upon a semi-infinite breakwater and parabolic shoal, where both diffraction and refraction are present, is solved. There is no analytical solution for this case. The combination of finite and infinite elements is found to be an effective and accurate technique for such problems.  相似文献   

3.
The mild slope equation has been widely used to describe combined wave refraction and diffraction. In this study, a new numerical algorithm is developed to solve the time‐dependent mild slope equation in a second‐order hyperbolic form. The numerical algorithm is based on a compact and explicit finite difference method that is second‐order accurate in both time and space. The algorithm has the similar structure to the leap‐frog method but is constructed on three time levels for the second‐order time derivative term. The numerical model has the capability of simulating transient wave motion by correctly predicting the speed of wave energy propagation, which is important for the real‐time forecast of the arrival time of storm waves generated in the far field. The model is validated against analytical solution for wave shoaling and experimental data for combined wave refraction and diffraction over a submerged elliptic shoal on a slope (Coastal Eng. 1982; 6 :255). Lastly, the realistic scale Homma's island (Geophys. Mag. 1950; 21 :199) is studied with the use of various wave periods of T = 720s, T = 120 s, and T = 24 s. These wave periods correspond to long, intermediate, and short waves for the given topography, respectively. Comparisons are made between numerical results and existing analytical solutions in terms of the wave amplification around the island, which serves as the indicator for the potential wave runup. Excellent agreements are obtained. The model runs on a PC (Pentium IV 1.8GHz) and the computer capacity allows the computation of a mesh system up to 3000 × 3000, which is equivalent to about 150 × 150 waves or a large area of 540km × 540km for a wave train with the period of T = 60 s. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of plane steady gravitational waves of finite amplitude, caused by a periodically distributed pressure over the surface of an ideal incompressible gravity fluid stream of finite depth, is considered. It is assumed that these waves do not vanish as the pressure becomes constant, but become free waves, which exist at constant pressure and special values of the stream velocity. As in [1], where a stream of finite depth is considered, such waves will be designated composite as contrasted with forced waves which vanish together with the variable part of the pressure. A general method is given for computing the composite wave characteristics. The first three approximations are computed to the end. An approximate equation for the wave profile is found.  相似文献   

5.
The solitary water wave problem is to find steady free surface waves which approach a constant level of depth in the far field. The main result is the existence of a family of exact solitary waves of small amplitude for an arbitrary vorticity. Each solution has a supercritical parameter value and decays exponentially at infinity. The proof is based on a generalized implicit function theorem of the Nash–Moser type. The first approximation to the surface profile is given by the “KdV” equation. With a supercritical value of the surface tension coefficient, a family of small amplitude solitary waves of depression with subcritical parameter values is constructed for an arbitrary vorticity.  相似文献   

6.
A special solution of wave dissipation by finite porous plates   总被引:1,自引:0,他引:1  
The reflection and transmission of water waves caused by a small amplitude incident wave through finite fine porous plates with equal spacing and permeability in an infinitely long open channel of constant water depth and zero slope are studied. A special solution is obtained when the distance between the two neighbouring plates is an integral multiple of the half-wavelength of the incident wave. It is found, that when the dimensionless porous-effect parameter G_0 is equal to half the total plate number, the wave dissipation reaches a maximum, and only 50% of the incident wave energy remains in the reflected and transmitted waves. Meanwhile, the reflected and transmitted waves have the same amplitude.  相似文献   

7.
A coupled numerical scheme, based on modal expansions and boundary integral representations, is developed for treating propagation and scattering by dense arrays of impenetrable cylinders inside a waveguide. Numerical results are presented and discussed concerning reflection and transmission, as well as the wave details both inside and outside the array. The method is applied to water waves propagating over an array of vertical cylinders in constant depth extended all over the water column, operating as a porous breakwater unit in a periodic arrangement (segmented breakwater). Focusing on the reflection and transmission properties, a simplified model is also derived, based on Foldy–Lax theory. The latter provides an equivalent index of refraction of the medium representing the porous structure, modeled as an inclusion in the waveguide. Results obtained by the present fully coupled and approximate models are compared against experimental measurements, collected in wave tank, showing good agreement. The present analysis permits an efficient calculation of the properties of the examined structure, reducing the computational cost and supporting design and optimization studies.  相似文献   

8.
非线性的存在会产生高次谐波,这些谐波又反作用于原来的低次谐波,使波幅发生缓慢变化,从而产生缓慢调制现象.这里从考虑均匀流作用下的毛细重力水波基本方程出发,在不可压缩、无旋、无黏条件假设下,使用多重尺度分析方法推导出了在均匀流影响下有限深水毛细重力波振幅所满足的非线性Schr?dinger方程(NLSE).分析了NLSE解的调制不稳定性.给出了毛细重力波调制不稳定的条件和钟型孤立波产生的条件.分析了无量纲最大不稳定增长率随无量纲水深和表面张力的变化趋势.同时给出了无量纲不稳定增长率随无量纲微扰动波数变化的曲线,呈现出了先增大后减小的趋势.最后指出均匀顺流减小了无量纲不稳定增长率及最大增长率,逆流增大了它们.由表面张力作用产生的毛细波及重力与表面张力共同作用产生的毛细重力波,与流的相互作用可以改变海表粗糙度和海洋上层流场结构,进而影响海气界面动量、热量及水汽的交换.了解海表这些短波动力机制,对卫星遥感的精确测量、海气相互作用的研究及海气耦合模式的改进等有重要意义.   相似文献   

9.
变深度浅水域中非定常船波   总被引:1,自引:0,他引:1  
陈波  吴建康 《力学学报》2003,35(1):64-68
以Green—Naghdi(G—N)方程为基础,采用波动方程/有限元法计算船舶经过变深度浅水域时非定常波浪特性.把运动船舶对水面的扰动作为移动压强直接加在Green-Naghdi方程里,以描述运动船体和水面的相互作用.以Series60 CB=0.6船为算例,给出自由面坡高,波浪阻力在船舶经过一个水下凸包时变化规律,并与浅水方程的结果进行了比较.计算结果表明,当船舶经过凸包时,波浪阻力先增加,后减少,并逐渐趋于正常.同时发现,当船速小于临界速度时(Fr=√gh<1.0),G—N方程给出的船后尾波比浅水方程的结果明显,波浪阻力也比浅水方程的结果有所提高,频率散射必须考虑.当船速大于临界速度时(Fr=√gh>1.0),G—N方程的计算结果与浅水方程差别不大,频率散射的影响可以忽略.  相似文献   

10.
基于相平均方法的折射绕射联合波浪模型   总被引:1,自引:0,他引:1  
张景新  刘桦 《力学学报》2007,39(5):595-601
近岸带波浪运动的研究具有很重要的工程意义,近年来已获得了较丰硕的研 究成果并发展了许多波浪模型,而基于不同理论的波浪模型往往具有特定的适用性. 在海岸 工程中应用比较广泛的一类波浪模型以波能(波作用量)守恒为基本依据,如SWAN模型. 该 类模型在实际工程中已经得到了大量的应用,但该类模型未计及波浪绕射效应,成为其突出 的缺陷之一. 如何对模型做适当的改进,使之适用于波浪绕射的模拟,从而在原有基础上拓 广模型的应用范围是一项具有实际意义的研究工作. 该文采用波能(波作用量)守恒方程描 述近岸带波浪运动,通过引入绕射因子,得到折射、绕射联合波浪模型,从而拓广了模型的 应用范围. 通过实际算例验证,表明所建立的模型计及了波浪折射、绕射作用,对相平 均波浪模型在波浪绕射效应模拟方面的改进具有一定的意义.  相似文献   

11.
IntroductionAccuratemodellingofsurfacewavedynamicsincoastalregionshasbeenthegoalofmuchrecentresearch ,whichhasbeensummarizedinsurveysbyDingemans( 1 997) [1]andKirby( 1 997) [2 ].Therichnessofcoastalwavedynamicsarisesfromthestrongambientcurrentsandthewidevariations…  相似文献   

12.
Periodic and solitary gravity-capillary waves propagating at a constant velocity at the surface of a fluid of finite depth are considered. The vorticity in the fluid is assumed to be constant. Analytical solutions are presented for waves of small amplitude. For waves of large amplitude, numerical solutions are computed by boundary integral equation methods. The results unify previous findings for irrotational gravity capillary waves and gravity waves with constant vorticity. In particular solitary waves with oscillatory tails and branches of solutions which exist only for waves of large amplitude are found.  相似文献   

13.
We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way to the sea bottom. There are at least two areas of applications: reflective structures and microseisms.Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They are recorded on land-based seismic stations throughout the world and they are divided into primary and secondary types, as a function of spectral content. Secondary microseisms are generated by the interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency of microseism generation thus depends in part on ocean wave frequency and direction. Based on the second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the phenomenon, is presented.  相似文献   

14.
Tae-Hwa Jung 《Wave Motion》2012,49(1):152-164
We derived analytical solutions for long waves on a circular island with combined topographies. The inner region is a circular island on a flat bottom and the outer region is a cylindrical island on a shoal. The solution for the circular island on a flat bottom was developed previously by Jung et al. (2010) [13]. The solution for the cylindrical island on a shoal was developed in the present study using the methods of separation of variables, Taylor series expansion, and Frobenius series. The present solution for the cylindrical island on a shoal was verified by comparing with previous solutions which was developed for limited cases. Also, some cases were investigated with different values of wave period, shoal vertex level, and power of the radius. The solutions for two different types of real islands were obtained using the solution for the combined topographies. The present solution for the combined topographies can be applied more accurately to the real island than the previous solution for the single bottom topography.  相似文献   

15.
In this paper, we prove the existence of a large family of nontrivial bifurcating standing waves for a model system which describes two-way propagation of water waves in a channel of finite depth or in the near shore zone. In particular, it is shown that, contrary to the classical standing gravity wave problem on a fluid layer of finite depth, the Lyapunov–Schmidt method applies to find the bifurcation equation. The bifurcation set is formed with the discrete union of Whitney's umbrellas in the three-dimensional space formed with 3 parameters representing the time-period and the wave length, and the average of wave amplitude.  相似文献   

16.
In this paper, we explain how the ‘ray method’ can be used to describe the deflection, due to short waves, of a very large floating platform in finite or infinite water depth. The elastic properties of the platform are isotropic, but may be distributed inhomogeneously. In the first section, we give a derivation of the equation for the phase and amplitude functions. Then an integro-differential equation for the determination of the deflection is used to find the initial condition for amplitude along the characteristics. For the homogeneous two-dimensional platform in water of finite depth, an exact solution in the form of a superposition of modes can be obtained. This simplified problem serves as a ‘canonical’ problem for problems with the same structure locally. In the last section, we give some result for a semi-infinite platform with varying elasticity coefficient, the mass distribution being taken constant.  相似文献   

17.
The finite amplitude longitudinal waves along a uniform bar are examined by using the method or multiple scales. The evolution of the complex amplitude of a quasi-monochromatic progressive wave is shown to be governed by a non-linear Schrödinger equation. The analysis reveals that the constant amplitude progressive waves are stable against modulation.  相似文献   

18.
The reflection and refraction of a longitudinal wave at an interface between a perfectly conducting nonviscous liquid half-space and a perfectly conducting microstretch elastic solid half-space are studied. The appropriate solutions to the governing equations are obtained in both the half-spaces satisfying the required boundary conditions at the interface to obtain a system of five non-homogeneous equations in the amplitude ratios of various reflected and transmitted waves. The system is solved by a Fortran program of the Gauss elimination method for a particular example of an interface between water and aluminum-epoxy composite. Numerical values of the amplitude ratios are computed for a certain range of the incidence angle both in the presence and absence of an impressed transverse magnetic field. The effects of the presence of the transverse magnetic field on the amplitude ratios of various reflected and transmitted waves are shown graphically.  相似文献   

19.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
给出了磁场、热场和弹性场多场耦合作用下微极广义热弹性固体的一般控制方程.该方 程既包含了磁场、热场和弹性场的耦合作用,又在其广义热传导方程中涵盖了耦合热弹理论 (C-D)及其5类推广(L-S理论,G-L理论,G-N(II,III)理论和C-T理论).运用该微极广义磁热 弹性控制方程,研究了在定常磁场作用下, 具有均匀初始温度的两理想接触微极弹性介质平面分界面上磁热弹性波的反射和折射现象.给出了分别在缺少磁场、热场作用或不同广义热传 导理论下反射或折射热波、纵向位移波、耦合横向和微旋转波与入射纵向位移波的振幅比随 入射角变化的关系曲线.对缺少磁、热和微极性以及热松弛时间时对应的反射、折射系数进 行了对比.结果表明磁、热和微极性以及热松弛时间对振幅比均有不同程度的影 响,与磁、热和微极性一样,热松弛时间对不同类型波的影响能力差别明显,但对同 一类型的反射波和折射波的影响相似.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号