首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Complex Hydroxides of Chromium: Na9[Cr(OH)6]2(OH)3 · 6 H2O and Na4[Cr(OH)6]X · H2O (X = Cl, (S2)1/2) – Synthesis, Crystal Structure, and Thermal Behaviour Green plate‐like crystals of Na9[Cr(OH)6]2(OH)3 · 6 H2O (triclinic, P1, a = 872.9(1) pm, b = 1142.0(1) pm, c = 1166.0(1) pm, α = 74.27(1)°, β = 87.54(1)°, γ = 70.69(1)°) are obtained upon slow cooling of a hot saturated solution of CrIII in conc. NaOH (50 wt%) at room temperature. In the presence of chloride or disulfide the reaction yields green prismatic crystals of Na4[Cr(OH)6]Cl · H2O (monoclinic, C2/c, a = 1138.8(2) pm, b = 1360.4(1) pm, c = 583.20(7) pm, β = 105.9(1)°) or green elongated plates of Na4[Cr(OH)6](S2)1/2 · H2O (monoclinic, P21/c, a = 580.8(1) pm, b = 1366.5(3) pm, c = 1115.0(2) pm, β = 103.71(2)°), respectively. The latter compounds crystallize in related structures. All compounds can be described as distorted cubic closest packings of the anions and the crystal water molecules with the cations occupying octahedral sites in an ordered way. The thermal decomposition of the compounds was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In all cases the final decomposition product is NaCrO2.  相似文献   

2.
Crystal Structures of Sr(OH)2 · H2O, Ba(OH)2 · H2O (o.-rh. and mon.), and Ba(OH)2 · 3 H2O The crystal structures of Ba(OH)2 · 3 H2O (Pnma, Z = 4), γ-Ba(OH)2 · H2O (P21/m, Z = 2) and the isotypic Sr(OH)2 · H2O and β-Ba(OH)2 · H2O (Pmc21, Z = 2) were determined using X-ray single crystal data. Ba(OH)2 · 3 H2O and Ba(OH)2 · H2O mon. crystallize in hitherto unknown structure types. The structure of Ba(OH)2 · H2O mon. is strongly related to that of rare earth hydroxides M(OH)3 with space group P63/m (super group of P21/m). The metal-oxygen distances are significantly shorter for OH? ions (mean Ba—O bond lengths of all hydroxides under investigation 278.1 pm) than for H2O molecules (289.9 pm). Corresponding to other hydrates of ionic hydroxides, the water molecules form strong hydrogen bonds to adjacent OH? ions whereas the hydroxide are not H-bonded.  相似文献   

3.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

4.
Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O – A Telluric Acid-rich Inclusion Compound Single crystals of Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O have been grown from aqueous solution. It crystallizes triclinically in space group P1 with Z = 1, a = 1 086.6(1), b = 1 095.6(1), c = 1 105.5(1) pm, α = 118.83(1), β = 106.22(1) and γ = 100.00(1)°. X-ray structure determination (5 755 reflections, 251 parameters, Rg = 0.0355) revealed an infinite chain consisting of hydrogen bonded (OH …? O 259.4(5) – 267.4(6) pm) Te(OH)6 molecules and [TeMo6O24]6? anions to be the Prominent structural feature. Further hydrogen bonds between neighbouring Te(OH)6 molecules connect these chains to yield a two-dimensionally infinite arrangement.  相似文献   

5.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

6.
Hydroxoplatinates(IV) of Calcium, Strontium, and Barium CaPt(OH)6, CaPtO2(OH)2, SrPt(OH)6 · 2 H2O, and BaPt(OH)6 were prepared by precipitation from alkali hydroxoplatinate(IV) solution with earth alkali salt solutions, and characterized by X-ray diffraction and chemical analysis. The crystal structure of CaPt(OH)6, space group P3 1c-;D, with isolated octahedral Pt(OH)6 ions, was determined by X-ray powder data. Probable hydrogen positions are calculated, and hydrogen bonding is discussed.  相似文献   

7.
Ternary Hydroxides. I. Synthesis, Structure, and Properties of Li2[Sn(OH)6] · 2 H2O Colourless crystals of Li2[Sn(OH)6] · 2 H2O were synthesized by reaction of SnCl4 with LiOH in aqueous solution. The crystal structure was determined from single crystal data. Li2[Sn(OH)6] · 2 H2O: monoclinic, P21/n (Nr. 14), a = 502.3(1), b = 692.3(1), c = 1020.2(3) pm, β = 99.78(1)°, V = 349.6(2) · 106 pm3, Z = 2, R/Rw = 0.0192/0.0472, N(I) > 2σ(I) = 1527, N(Par.) = 54. Within the crystal structure only slightly distorted octahedrally [Sn(OH)6]2? ions are bonded via hydrogen bonds with water molecules forming layers, which themselve are linked by tetrahedrally coordinated Li ions; the structure is in accordance with the IR-data and the results of the 119Sn solid state NMR-spectroscopy; the hydrat water is eliminated at 117.1°C, the condensation reaction – forming the ternary oxide – takes place at 257.7°C.  相似文献   

8.
Crystal Growth and Structure of CoSO4 · Pyrazine · 6 H2O (I) and (CoSO4)2 · Pyrazine · 12 H2O (II) Single crystals of μ-pyrazino-bis[pentaquacobalt(II)]-sulfate-dihydrate CoSO4(pz) · 6 H2O and Tetraqua-μ-pyrazino-cobalt(II)sulfate-dihydrate (CoSO4)2(pz) · 12 H2O were grown by using gel methods and investigated by X-ray analysis. CoSO4(pz) · 6 H2O (I) shows monoclinic symmetry, space group C2/c; a = 1006.4(4) pm, b = 1026.9(4) pm, c = 1261.5(2) pm; β = 104.01(4)°; Z = 4. (CoSO4)2(pz) · 12 H2O (II) shows orthorhombic symmetry, space group Pbam; a = 1262.3(4) pm, b = 1231.3(4) pm, c = 684.1(2) pm; Z = 2. CoSO4 and Pyrazine crystallize in a polymeric (I) as well as in a dimeric (II) compound. In the polymeric compound the molecules are bonded by pyrazine to form alternating linear chains. The dimer is a dinuclear complex with a bridging pyrazine molecule.  相似文献   

9.
On Hydrates of the Type MX2 · 1 H2O with M = Sr, Ba and X = Cl, Br, I. Crystal Structures of Strontium Chloride Monohydrate, SrCl2 · 1 H2O, and Strontium Bromide Monohydrate, SrBr2 · 1 H2O The structures of SrCl2 · 1 H2O, orthorhombic, Pnma, a = 1088.1(1), b = 416.2(1), c = 886.4(1) pm, Z = 4, dc = 2.92 Mg m?3, R = 0.052 for 755 reflections, and of SrBr2 · 1 H2O, orthorhombic, Pnma, a = 1146.4(1), b = 429,5(1), c = 922.9(1) pm, Z = 4, dc = 3.88 Mg m?3, R = 0.056 for 762 reflections have been determined from a Patterson synthesis and refined by Fourier and Least Squares methods. The structure consists of [SrX2 = H2O]n-layers normal to [100] and Sr? H2O? Sr? H2O-chains parallel [010]. The Sr? O distances are 265.1(3) pm, SrCl2 · 1 H2O, and 265.9(4) pm, SrBr2 · 1 H2O. The shortest Sr? Cl and Sr? Br distances (298.9(1) and 315.3(1) pm) are within the layers. The environment of oxygen and strontium is a distorted tricapped trigonal prism. The orientation of the water molecules has been determined from vibrational spectroscopic measurements. The hydrogen atoms H1 and H2 form bifurcated hydrogen bonds of different strength to neighbouring halide ions. The corresponding O···X distances are 331.9(4) and 320.2(4) pm, SrCl2 · 1 H2O, and 340.8(4) and 333.8(4) pm, SrBr2 · 1 H2O. The other O? X distances are between 310.3(5) and 323.7(5) pm, SrCl2 · 1 H2O, and 323.5(5) and 333.2(6) pm, SrBr2 · 1 H2O.  相似文献   

10.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

11.
On the Hydrates M(HSeO3)2 · 4H2O (M = Mg, Co, Ni, Zn) – Crystal Structures, IR, Raman, and Thermoanalytical Investigations From aqueous solutions of M(HSeO3)2 single crystals of Mg(HSeO3)2 · 4H2O and of the hitherto unknown compounds Co(HSeO3)2 · 4H2O, Ni(HSeO3)2 · 4H2O and Zn(HSeO3)2 · 4H2O could be obtained. The crystal structures, X-ray powder, IR, Raman and thermoanalytical (DTA, TG, Raman heating) data are presented and discussed. The crystal data of the isotypic compounds are: monoclinic, space group C2/c, Z = 4, Mg: a = 1 464.6(2), b = 755.3(1), c = 1 099.9(1) pm, β = 126.59(1)°, V = 0.9769(1) nm3, Co: a = 1 462.5(2), b = 756.5(2), c = 1 102.2(2) pm, β = 126.53(1)°, V = 0.9798(2) nm3, Ni: a = 1 452.2(2), b = 751.0(1), c = 1 091.5(1) pm, β = 126.28(1)°, V = 0.9595(1) nm3, Zn: a = 1 468.3(2), b = 755.8(1), c = 1 103.1(1) pm, β = 126.79(1)°, V = 0.9804(2) nm3. The crystal structures consist of hexagonal packed [M(HSeO3)2 · 2H2O]n chains of [MO4(H2O)2] octahedra linked by Se atoms. They contain trigonal pyramidal SeO2OH?ions with “free” hydroxyl groups and also “free” molecules of water of crystallization. The hydroxyl groups build strong H-bonds (O? H …? O distances: 265–268 pm). The IR spectra show AB doublett bands in the OH stretching mode region of the hydroxyl groups. The water molecules of crystallization are linked to planar (H2O)4 tetramers by H-bonds with unusually short O? H …? O bond distances of 271–273 pm. DTA and TG measurements indicate that thermal decomposition results in the direct formation of the respective diselenite MSe2O5. Raman heating measurements show under quasi static conditions the intermediate formation of the anhydrous hydrogen selenites.  相似文献   

12.
The double cyanides of nickel and platinum form structures capable of enclosing also phenol, for example, as guest molecule. Such clathrates are Ni(NH3)2Pt(CN)4 2 C6H5OH and Ni(en)2Pt(CN)4 · 0.14 C6H5OH. In the case of the tetracyano complexes, different thermal stabilities of their clathrate compounds could be achieved by alteration of the constituents of the cage structure and also of the guest molecules. According to the thermal behaviour, the clathrates may be divided into two groups: those which release the guest molecules in the first step of thermal decomposition (Ni(NH3)2Pt(CN)4· 2 C6H5OH), and those which lose the guest component only after partial destruction of the host cage (Ni(en)2Pt(CN)4 · 0.14 C6H5OH). The temperature ranges of loss of the guest component may determine the interval for their use in sorptive experiments. The temperature range for release of phenol from Ni(NH3)2Pt(CN)4 · · 2 C6H5OH is 55–244°, and from Ni(en)2Pt(CN)4 · 0.14 C6H5OH is 139–284°. The model host molecules NiPt(CN)4 · 6 H2O and Ni(en)3Pt(CN)4 · 3 H2O were also studied by thermal analysis.  相似文献   

13.
Hydrates of Cerium(III) Chloride The thermal dehydration of CeCl3 · 7 H2O to CeCl3 gives four definite intermediates: CeCl3 · 6 H2O, CeCl3 · 3 H2O, CeCl3 · 2 H2O, CeCl3 · H2O. In the hexahydrate monomeric [CeCl2(H2O)6]+ units exist. A structure analysis of CeCl3 · 3 H2O gave an orthorhombic unit cell (S.G. Pnma; Z = 4) with a = 1 242.7(4) pm; b = 881.8(8) pm, c = 693.4(5) pm. The structure consists of [CeCl4/2Cl(H2O)3] chains, where two Ce3+ ions are connected via two chloride ions, forming bent chains in the [010] direction. The trihydrates LnCl3 · 3 H2O (Ln = Pr? Tb) are isotypic, also one modification of LaCl3 · 3 H2O. The structures of the di- and mono-hydrate are not yet known. Molar volumina and solution enthalpies in water vary linearly with the number of H2O molecules per formula unit.  相似文献   

14.
From rehydration experiments the hydrates Ba(OH)2 · 8 H2O, Ba(OH)2 · 3 H2O β-Ba(OH)2, · 1 H2O, and γ-Ba(OH)2 · 1 H2O have been found in the system Ba(OH)2-H2O. Thermoanalytical measurements (DTA, TG, DTG, high temperature X-ray diffraction, high temperature Raman scattering) on these hydrates are reported. Thermal decomposition of Ba(OH)2 · 8 H2O and Ba(OH)2 · 3 H2O always results in the formation of β-Ba(OH)2 · 1 H2O, the stable form of the monohydrates at ambient temperature. Dehydration of β- and γ-Ba(OH)2 · 1 H2O, both of which form anhydrous β-Ba(OH)2 as the first product of decomposition, starts at 105 and 115°C, respectively. Single crystals of Ba(OH)2 · 3 H2O and γ-Ba(OH)2 · 1 H2O were prepared from Ba(OH)2 · 8 H2O meltings and from ethanolic solutions of Ba(OH)2 , respectively. The crystal data are: Ba(OH)2 · 3 H2O (orthorhombic, Pnma): a = 764.0(2), b = 1140,3(5), c = 596.5(1) pm, Z = 4; γ-Ba(OH)2 · 1 H2O (monoclinic, P21/m or P21): a = 704.9(2), b = 418.4(1), c = 633.3(1) pm, β = 111.45(2)°, Z = 2.  相似文献   

15.
In den Systemen FeSO3? H2O und NiSO3? H2O konnten folgende Hydrate erhalten werden: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O und NiSO3 · 2 H2O. Die Gitterdaten der folgenden Hydrate wurden anhand von Einkristallmessungen bestimmt: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. Die IR- und Raman-Spektren sowie das Ergebnis thermoanalytischer Messungen (DTA, DTG, Röntgenheizaufnahmen) werden mitgeteilt. Die bei Sulfiten und Sulfithydraten zweiwertiger Metalle bisher beobachteten Strukturtypen werden diskutiert. Sulfites and Sulfite Hydrates of Iron and Nickel. X-ray, Thermoanalytical, I.R., and Raman Data In the systems FeSO3? H2O and NiSO3? H2O the following hydrates have been found: α-FeSO3 · 3H2O, γ-FeSO3 · 3H2O, FeSO3 · 2,5 H2O, FeSO3 · 2 H2O, NiSO3 · 6 H2O, NiSO3 · 3 H2O, NiSO3 · 2,5 H2O and NiSO3 · 2 H2O. The following crystal data have been determined by single crystal measurements: γ-FeSO3 · 3 H2O: a = 965,9(1), b = 557,1(1), c = 944,7(1) pm, Z = 4, FeSO3 · 2 H2O (P21/n): a = 645,6(1), b = 863,1(1), c = 761,2(1) pm, β = 99,84(1)°, Z = 4, NiSO3 · 3 H2O: a = 945,0(1), b = 547,2(1), c = 932,5(1) pm, Z = 4, NiSO3 · 2,5 H2O (P41212): a = b = 935,3(1), c = 1016,6(1) pm, Z = 8, NiSO3 · 2 H2O (P21/n): a = 631,4(1), b = 851,0(1), c = 744,7(1) pm, β = 98,91(1)°, Z = 4. IR, Raman, and thermoanalytical (DTA, DTG, high temperature X-ray) data are presented. The structure types found for sulfites and sulfite hydrates of bivalent metals are discussed.  相似文献   

16.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

17.
M(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O (M = Mn2+, Co2+) – Two Isotypic Coordination Polymers with Layered Structure Monoclinic single crystals of Mn(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O ( 1 ) and Co(H2O)2(4,4′‐bipy)[C6H4(COO)2]· 2H2O ( 2 ) have been prepared in aqueous solution at 80 °C. Space group P2/n (no. 13), Z = 2; 1 : a = 769.20(10), b = 1158.80(10), c = 1075.00(10) pm, β = 92.67(2)°, V = 0.9572(2) nm3; 2 : a = 761.18(9), b = 1135.69(9), c = 1080.89(9) pm, β = 92.276(7)°, V = 0.9337(2) nm3. M2+ (M = Mn, Co), which is situated on a twofold crystallographic axis, is coordinated in a moderately distorted octahedral fashion by two water molecules, two oxygen atoms of the phthalate anions and two nitrogen atoms of 4,4′‐biypyridine ( 1 : M–O 219.5(2), 220.1(2) pm, M–N 225.3(2), 227.2(2) pm; 2 : Co–O 212.7(2), 213.7(2) pm, Co–N 213.5(3), 214.9(3) pm). M2+ and [C6H4(COO)2)]2? build up chains, which are linked by 4,4′‐biyridine molecules to yield a two‐dimensional coordination polymer with layers parallel to (001).Thermogravimetric analysis in air of 1 indicated a loss of water of crystallization between 154 and 212 °C and in 2 between 169 and 222 °C.  相似文献   

18.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

19.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

20.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号