首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of lanthanoid trinitrates Ln(NO3)3 with 15-crown-5 ether 1 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) and with 18-crown-6 ether 2 (Ln = La, Ce, Pr, Nd) having a 1:1 stoichiometry as well as 4:3 complexes with 2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. All the isolated complexes are solvent free. At 170–220° the 1:1 complexes of 2 are quantitatively transformed into 4:3 complexes. X-Ray powder diagrams of the neodymium complexes with 2 indicate that both the 1:1 and 4:3 complexes are genuine compounds. All the 1:1 complexes show a characteristic IR. absorption band at 875–880 cm?1 absent from both the spectra of the free ligands and of the 4:3 complexes. The spectroscopic properties (IR. and electronic spectra, fluorescence lifetimes) of the complexes and the low magnetic moments of the Ln(III) ions in the complexes with Ln = Ce-Eu are indicative of a strong interaction between the lanthanoid ions and the crown ethers 1 and 2 .  相似文献   

2.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

3.
Two series of heteroleptic crown-substituted tris(phthalocyaninate) complexes (Pc)Ln[(15C5)4Pc]Ln(Pc) and [(15C5)4Pc]Ln[(15C5)4Pc]Ln(Pc), where 15C5 is 15-crown-5, (Pc2−) is the phthalocyaninate dianion, Ln = Nd, Eu, Ho, Er, and Yb, were prepared by the reaction of tetra-15-crown-5-phthalocyanine H2[(15C5)4Pc] with the corresponding lanthanide acetylacetonates and lanthanum bis(phthalocyaninate) La(Pc)2, which was used as a phthalocyaninate dianion donor. The composition and structure of the synthesized complexes were confirmed by MALDI TOF mass spectrometry, UV-Vis absorption spectroscopy, and 1H NMR. Complete assignment of the proton resonance signals of the paramagnetic lanthanide complexes was based on analysis of lanthanide-induced shifts.  相似文献   

4.
在乙腈和二氯甲烷混合溶液中合成了三价稀土元素(La, Nd, Eu, Dy, Er, Yb)硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的六个新配合物。并在氩气氛中, 以四氢呋喃为溶剂, 锂-萘为还原剂, 制得了二价铕硫氰酸盐与辛二酰双(4'-苯并-15-冠-5)的固体配合物。通过元素分析、红外光谱、差热热重分析、荧光光谱、穆斯堡尔谱、电子自旋共振谱、还原性实验等研究了双冠醚与稀土离子的配位作用, 并讨论了三价和二价稀土配合物在物理化学性质上的差别。  相似文献   

5.
Rare examples of amido‐iodo complexes of selected divalent lanthanides can be synthesized by using deprotonated Ap*H {Ap*H = 2,6‐diisopropylphenyl)‐[6‐(2,4,6‐triisopropylphenyl)‐pyridin‐2‐yl]‐amine} as a stabilizing ligand. Reaction of [Ap*K]n with [LnI2(thf)n] (Ln = Eu, Yb, n = 4,5) in THF leads to [Ln(Ap*)I(thf)2]2 (Ln = Eu, Yb). An attempted reduction of these divalent heteroleptic complexes with KC8 to synthesize complexes containing an unsupported Ln–Ln bond resulted in the formation of [Ln(Ap*)2(thf)2]. These lanthanide complexes were characterized by X‐ray structure analysis.  相似文献   

6.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

7.
《Polyhedron》1988,7(1):79-81
The air and moisture stable complexes [Ln{HB(C3N2H3)3}2{MeC(O)CHC(O)Me}] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Y), have been prepared and characterized. The molecular structures of the compounds with Ln = Ce and Yb reveal that a substantial distortion of the coordination geometry found for Ce3+ is necessary to allow the ligand set to accommodate the smaller Yb3+ ion.  相似文献   

8.
The occurrence of tetrad effects has been studied for the variations in formation constants (logK MAL MA ) of the mixed ligand complexes of the type [Ln(III).A.L.] (where Ln(III)=La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III) or Dy(III); A=EDTA or NTA; L=IMDA), with the number of 4f electrons of the tervalent lanthanides. A differential plot method has been suggested for locating the (minor) breaks at the 4f 3–4f 4 and 4f 10–4f 11 stages in the Ln(III) series.  相似文献   

9.
毛江高  金钟声 《结构化学》1994,13(4):276-280
CrystalStructuresofLn(NO_3)_3(Ln=La,Yb)Complexeswith12-crown-4MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChem...  相似文献   

10.
The preparation and characterization of a series of complexes of the Yb and Eu cations in the oxidation state II and III with the tetradentate N,O‐donor tripodal ligands (tris(2‐pyridylmethyl)amine (TPA), BPA? (HBPA=bis(2‐pyridylmethyl)(2‐hydroxybenzyl)amine), BPPA? (HBPPA=bis(2‐pyridylmethyl)(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine), and MPA2? (H2MPA=(2‐pyridylmethyl)bis(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine) is reported. The X‐ray crystal structures of the heteroleptic Ln2+ complexes [Ln(TPA)I2] (Ln=Eu, Yb) and [Yb(BPA)I(CH3CN)]2, of the Ln2+ homoleptic [Ln(TPA)2]I2 (Ln=Sm, Eu, Yb) and [Eu(BPA)2] complexes, and of the Ln3+ [Eu(BPPA)2]OTf and [Yb(MPA)2K(dme)2] (dme=dimethoxyethane) complexes have been determined. Cyclic voltammetry studies carried out on the bis‐ligand complexes of Eu3+ and Yb3+ show that the metal center reduction occurs at significantly lower potentials for the BPA? ligand as compared with the TPA ligand. This suggests that the more electron‐rich character of the BPA? ligand results in a higher reducing character of the lanthanide complexes of BPA? compared with those of TPA. The important differences in the stability and reactivity of the investigated complexes are probably due to the observed difference in redox potential. Preliminary reactivity studies show that whereas the bis‐TPA complexes of Eu2+ and Yb2+ do not show any reactivity with heteroallenes, the [Eu(BPA)2] complex reduces CS2 to afford the first example of a lanthanide trithiocarbonate complex.  相似文献   

11.
单N-乙酸取代O2N2大环配体及其稀土配合物的合成与表征   总被引:2,自引:0,他引:2  
Aseries of new rare earth complexes LnL(NO3)2·2H2O(Ln=La,Pr,Nd,Sm,Eu,Gd,Dy,Yb;L=1,2-diaza-3,4: 9,10-dibenzo-5,8-dioxyacyclopentadecane-N-acetic ion) were prepared. The complexes were characterized by elemental analysis, ICPmethod, IRspectra, 1H NMRand Molar conductance. It was found that the ether oxygen, carboxy oxygen and nitrogen atoms of the ligand are coordinated to the metal ion, as well as a free nitrate and coordianted nitrate ion in the complex.  相似文献   

12.
The multi-step dehydration and decomposition of trivalent lanthanum and lanthanide heptanediate polyhydrates were investigated by means of thermal analysis completed with infrared study. Further more, X-ray diffraction data for investigated heptanediate complexes of general stoichiometry Ln2(C7H10O4)3.nH2O (wheren=16 in the case of La, Ce, Pr, Nd and Sm pimelates,n=8 for Eu, Gd, Tb, Dy, Er and Tm pimelates,n=12 for Ho, Yb and Lu pimelates) were also reported.
Zusammenfassung Mittels TG, DTG, DTA wurde in Verbindung mit IR-Methoden der mehrstufige Dehydratations- und der Zersetzungsvorgang der Polyhydrate der PimelinsÄuresalze von dreiwertigem Lanthan und dreiwertigen Lanthanoiden untersucht. Röntgendiffraktionsdaten der untersuchten Heptandiat-Komplexe mit der allgemeinen Formel Ln2(C7H10O4)3 nH2O (mitn=16 für Ln=La, Ce, Pr, Nd und Sm,n=8 für Ln=Eu, Gd, Tb, Dy, Er und Tm sowien=12 für Ln=Ho, Yb und Lu) werden ebenfalls gegeben.
  相似文献   

13.
Han F  Teng Q  Zhang Y  Wang Y  Shen Q 《Inorganic chemistry》2011,50(6):2634-2643
The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y < Nd < La. The amine elimination of Ln[N(TMS)(2)](3) with the bulky bidentate Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Pr(i)(2)-C(6)H(3)) afforded the monoamido lanthanide complexes L'(2)LnN(TMS)(2) (Ln = Yb (9), Y (10), Nd (11), and La (12)). While the amine elimination with the less bulky Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Me(2)-C(6)H(3)) yielded the desired monoamido complexes with the small metals of Y and Yb, L'(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L'(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.  相似文献   

14.
Two series of new lanthanide(III) complexes of the type [Ln(HSAT)2(H2O)3Cl3] and [Ln(HSAT)2(NO3)3], where Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Tm, Yb, or Lu, and HSAT = 2-(N-salicylideneamino)-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene, are synthesized by the reaction of LnCl3 or Ln(NO3)3 with the title ligand in ethanol. The complexes are characterized by elemental analysis, magnetic moment values, molar conductivity, IR, UV-Vis, and 1H NMR spectral data. Two selected complexes are subject to thermogravimetric analysis, and their kinetic parameters are estimated using Coats-Redfern equation. The complex [La(HSAT)2(NO3)3] underwent facile transesterification when refluxed in methanol. The ligand and some selected complexes are screened for their antimicrobial properties. Antimicrobial activities of the ligand increase on coordination with the metal ion. The text was submitted by the authors in English.  相似文献   

15.
Rare earth metals activated with ca. 2% iodine react directly with 2,6-diisopropylphenol (HOdip) in tetrahydrofuran (thf), 1,2-dimethoxyethane (dme), and dig-dme (dig = di(2-methoxyethyl) ether) to give solvated phenolate complexes [Ln(Odip)(3)(thf)(n)] (Ln = La, Nd, n = 3; Ln = Sm, Dy, Y, Yb, n = 2), [Eu(Odip)(μ-Odip)(thf)(2)](2), [Ln(Odip)(3)(dme)(2)] (Ln = La, Yb) and [La(Odip)(3)(dig)] in good yield for Ln = La, Nd, Eu but modest yield for smaller Ln metals under comparable conditions. However, increasing the excess of metal greatly increased the yield for Ln = Y. The synthetic method has general potential, at least for lanthanoid phenolates. Comparison redox transmetallation/protolysis (RTP) reactions between Ln metals, Hg(C(6)F(5))(2) and the phenol gave higher yields in shorter time and, for Eu, gave [Eu(Odip)(3)(thf)(3)] in contrast to an Eu(II) complex from Eu(I(2)). New [Ln(Odip)(3)(thf)(3)] complexes have fac-octahedral structures and [Ln(Odip)(3)(thf)(2)] monomeric five coordinate distorted trigonal bipyramidal structures with apical thf ligands. [Eu(Odip)(μ-Odip)(thf)(2)](2) is an unsymmetrical dimer with two bridging Odip ligands. One five coordinate Eu atom has distorted trigonal bipyramidal stereochemistry and the other is distorted square pyramidal. Whilst [La(Odip)(3)(dme)(2)] has irregular seven coordination with mer-Odip and chelating dme ligands, [Ln(Odip)(3)(dme)(2)] (Ln = Dy, Y (prepared by ligand exchange), Yb) are monomeric six coordinate with one chelating and one unidentate dme. A six coordinate fac-octahedral arrangement is observed in [La(Odip)(3)(dig)].  相似文献   

16.
Heterobimetallic tert-butoxides (t-BuO)5Cu2Ln (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), (t-BuO)5MLa (M = Mn, Fe, Co, Ni), (t-BuO)5ZnNd, and (t-BuO)4ZnFe were prepared in high yields by the reaction of t-BuOLi with a stoichiometric mixture of a lanthanide halide LnX3 (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb; X = Cl, I) and a d-transition metal salt MXn (M = Zn, Cu, Mn, Fe, Co, Ni; X = Cl, Br). (t-BuO)5Cu2Ln (Ln = Y, La, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) and (t-BuO)5ZnNd at room temperature and atmospheric pressure induce copolymerization of CO2 with cyclohexene oxide, affording the polycarbonate in a yield of 3–6 g g–1 catalyst. The complex (t-BuO)5FeLa, and also iron alcoholates (t-BuO)2Fe and (t-BuO)2Fe(bipy) under similar conditions catalyze the reaction of CO2 with propylene oxide affording monomeric propylene carbonate in a yield of 35–45 g g–1 catalyst.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 8, 2004, pp. 1295–1299.Original Russian Text Copyright © 2004 by Nikitinskii, L. Bochkarev, Khorshev, M. Bochkarev.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

17.
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).  相似文献   

18.
The reaction of the lanthanide oxides, bromotrimethylsilane and water in THF resulted in [LnBr3(THF)x]. If digylme (diglyme = diethylen glicol dimethyl ether) was added to these reaction mixtures in the mole ratio n(Ln): n(diglyme) ~ 1: 2.2 – 3, the ionic complexes [LnBr2(diglyme)2][LnBr4(diglyme)] (Ln = La ( 1 ), Sm ( 2 ), Eu ( 3 )) were isolated. Crystal structures of the two new complexes, 2 and 3 , which were recrystallized from dichloromethane, were determined. The immediate reaction of the complexes 1 and 2 with HMPA (HMPA = hexamethylphosphoramide) in toluene resulted in [LnBr2(HMPA)4]Br·0.5H2O (Ln = La( 4 ), Sm ( 5 )).  相似文献   

19.
Adducts of lanthanide perchlorates with 4-nitro and 4-chloro pyridine-Noxides (4-NPNO and 4-CPNO respectively) have been synthesised for the first time and characterised by analysis, electrolytic conductance, infrared, proton-NMR and electronic spectral data. The complexes are of the compositions Ln2(NPNO)15 (ClO4)6 (Ln = La, Pr, Nd and Gd), Tb(NPNO), (C1O4)6), Ln2(NPNO)13 (C1O4)6) (Ln = Dy, Ho, and Yb); Ln (CPNO)8 (C104)3) (Ln = La, Pr, Nd, Tb, Dy, Ho and Yb) and Ln(CPNO), (C1O4)3) (Ln = Sm and Gd). Conductivity and IR data provide evidence for the non-coordinated nature of the perchlorate groups. IR and NMR spectra suggest coordinationvia the oxygen of the N-oxide group. Electronic spectral shapes of the Nd+3 and Ho+3 complexes are interpreted in terms of eight-and seven-coordinate environments in the case of 4-NPNO complexes and eight-coordination in the case of 4-CPNO complexes. IR data indicate bridged structure in NPNO complexes of lanthanides other than Tb.  相似文献   

20.
The protonation constants of 2‐[4,7,10‐tris(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecan‐1‐yl]acetic acid (H7DOA3P) and of the complexes [Ln(DOA3P)]4? (Ln=Ce, Pr, Sm, Eu, and Yb) have been determined by multinuclear NMR spectroscopy in the range pD 2–13.8, without control of ionic strength. Seven out of eleven protonation steps were detected (pK =13.66, 12.11, 7.19, 6.15, 5.77, 2.99, and 1.99), and the values found compare well with the ones recently determined by potentiometry for H7DOA3P, and for other related ligands. The overall basicity of H7DOA3P is higher than that of H4DOTA and trans‐H6DO2A2P but lower than that of H8DOTP. Based on multinuclear‐NMR spectroscopy, the protonation sequence for H7DOA3P was also tentatively assigned. Three protonation constants (pKMHL, pKMH2L, and pKMH3L) were determined for the lanthanide complexes, and the values found are relatively high, although lower than the protonation constants of the related ligand (pK , pK , and pK ), indicating that the coordinated phosphonate groups in these complexes are protonated. The acid‐assisted dissociation of [Ln(DOA3P)]4? (Ln=Ce, Eu), in the region cH+=0.05–3.00 mol dm?3 and at different temperatures (25–60°), indicated that they have slightly the same kinetic inertness, being the [Eu(H2O)9]3+ aqua ion the final product for europium. The rates of complex formation for [Ln(DOA3P)]4? (Ln=Ce, Eu) were studied by UV/VIS spectroscopy in the pH range 5.6–6.8. The reaction intermediate [Eu(DOA3P)]* as ‘out‐of‐cage’ complex contains four H2O molecules, while the final product, [Eu(DOA3P)]4?, does not contain any H2O molecule, as proved by steady‐state/time‐resolved luminescence spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号