首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The molecular ions of N,N-dimethylthiobenzamide and its ortho substituted derivatives (substituents CH3, Cl, Br, I) lose a hydrogen atom and/or the ortho substituent. The mechanism of this process has been studied by measurements of the ionization energies, appearance energies of the product ions m/z 164 and the kinetic energy release during this process. The structure of the product ions m/z 164 and relevant reference ions have been investigated by mass analysed ion kinetic energy spectra, B/E linked scan spectra and collision induced decompositions. The results show clearly the formation of two different kinds of product ions m/z 164 depending on the substituent lost. Type a ions are formed by loss of a H atom or the CH3 substituent and correspond to protonated 3,4-benzo-N-methylpyroline-2-thione. The formation of these ions occurs by a hydrogen rearrangement followed by an intramolecular substitution via a 5-membered cyclic intermediate and is associated with a large release of kinetic energy. In contrast, the loss of the halogeno substituents to give type b ions probably occurs via a direct displacement reaction by the sulfur atom of the thioamide group giving rise to Gaussian shaped peaks mass analysed ion kinetic energy spectra.  相似文献   

2.
The effect of ortho substituents NH2, OCH3, CH3, Cl and NO2 on the fragmentation of five symmetrically and five unsymmetrically 2,2′-disubstituted stilbenes under electron impact was investigated. The fragmentation patterns deduced were supported by metastable transitions in the first and second field free regions and by exact mass measurements of prominent ions. In general, the fragmentation was found to be in accord with that of stilbene and the corresponding monosubstituted stilbenes. There are, however, some deviations from the general fragmentation scheme caused by direct through-space interactions of the ortho, ortho′ substituents with concomitant loss of neutral fragments. It is supposed that the formation of 7-membered cyclic or heterocyclic ions is the result of such through-space reactions.  相似文献   

3.
The mass spectra of six isomers of methylnitroimidazoles are reported and discussed. All compounds exhibit strong molecular ions, along with the characteristic fragmentations of aromatic nitro compounds. In some cases ortho effects—losses of OH., H2O, CHO., CH2O—are observed, due to interactions of adjacent substituents.  相似文献   

4.
The unimolecular fragmentation reactions of 28 protonated nitroarenes, occurring on the metastable ion time-scale, are reported. In addition, the collision-induced fragmentation of the same species have been studied at 10 eV and at 50 eV collision energy. When an OH, COOH or NH2 substituent is ortho to the nitro function, the dominant fragmentation involves loss of H2O, for both unimolecular and collision-induced reactions. When there is an electron-releasing substituent ortho or para to the litro group, loss of OH is the dominant fragmentation reaction both on the metastable ion time-scale and for ions activated by collision. When the electron-releasing substituent is meta to the nitro group, loss of NO2 is the dominant low-energy unimolecular fragmentation reaction while loss of HNO2 is the most important fragmentation for ions activated by 50 eV collisions. Elimination of NO from [MH]+ occurs to a significant extent in the unimolecular fragmentation of protonated nitrobenzene and those protenated nitrobenzenes containing electron- attracting substituents. In the collision-induced dissociation of these species loss of HNO2 occurs at the expense of loss of NO. The results are consistent with protonation predominantly at the nitro group. The results are discussed in terms of the use of neutral loss scans in tandem mass spectrometry to monitor complex mixtures for nitroarenes.  相似文献   

5.
An ion‐neutral complex (INC)‐mediated hydride transfer reaction was observed in the fragmentation of protonated N‐benzylpiperidines and protonated N‐benzylpiperazines in electrospray ionization mass spectrometry. Upon protonation at the nitrogen atom, these compounds initially dissociated to an INC consisting of [RC6H4CH2]+ (R = substituent) and piperidine or piperazine. Although this INC was unstable, it did exist and was supported by both experiments and density functional theory (DFT) calculations. In the subsequent fragmentation, hydride transfer from the neutral partner to the cation species competed with the direct separation. The distribution of the two corresponding product ions was found to depend on the stabilization energy of this INC, and it was also approved by the study of substituent effects. For monosubstituted N‐benzylpiperidines, strong electron‐donating substituents favored the formation of [RC6H4CH2]+, whereas strong electron‐withdrawing substituents favored the competing hydride transfer reaction leading to a loss of toluene. The logarithmic values of the abundance ratios of the two ions were well correlated with the nature of the substituents, or rather, the stabilization energy of this INC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The H2 and CH4 chemical ionization mass spectra of a selection of substituted nitrobenzenes have been determined. It is shown that reduction of the nitro group to the amine is favoured by high source temperatures and the presence of water in the ion source. The H2 chemical ionization mass spectra are much more useful for distinguishing between isomeric compounds than the CH4 CI mass spectra because of the more extensive fragmentation. For ortho substituents bearing a labile hydrogen abundant [MH ? H2O]+ fragments are observed. When the substituent is electron-releasing both ortho and para substituted nitrobenzenes show abundant [MH? OH]+ fragment ions while meta substituted compounds show abundant loss of NO and NO2 from [MH]+. The latter fragmentation is interpreted in terms of protonation para to the substituent or ortho to the vitro function, while the first two fragmentation routes arise from protonation at the nitro group. When the substituent is electron-attracting the chemical ionization mass spectra of isomers are very similar except for the H2O loss reaction for ortho compounds.  相似文献   

7.
The most significant mass spectral features of thirteen title compounds are discussed with the aid of high-resolution mass measurements and metastable peak analysis. The decomposition patterns of the compounds investigated are strongly affected by N-substitution and by methyl substituents ortho to the bridging chains (ortho effects). A unique feature connected with symmetrical macrocycles, bearing at least two ortho methyl substituents on each phenyl ring, is the presence in their spectra of diagnostically important peaks, corresponding to [M ? RNH2]+˙ and [M ? 2RNH2]+˙ (R = Ts, H, CH3). These daughter ions are proposed to be associated with the formation of cage compounds (multibridged cyclophanes), generated by an intramolecular [4 + 4] cycloaddition reaction of unstable linear bis-(o-xylylene) precursors.  相似文献   

8.
A series of neutral pentacoordinate silicon(IV) complexes with an SiSONCX skeleton (X=F, Cl, Br, I, N, or C) was synthesized and structurally characterized by multinuclear solution‐state and solid‐state NMR spectroscopy and single‐crystal X‐ray diffraction. These compounds contain an identical tridentate dianionic S,N,O ligand, a monodentate (pseudo)halogeno ligand (F, Cl, Br, I, NCS, N3, or CN), and a monodentate organyl ligand (methyl, phenyl, 4‐(trifluoromethyl)phenyl, or pentafluorophenyl). For most of these compounds, a dynamic equilibrium between the pentacoordinate silicon(IV) complex and two isomeric tetracoordinate silicon species in solution was observed. Most surprisingly, comparison of two series of analogous compounds containing fluoro, chloro, bromo, or iodo ligands demonstrated that pentacoordination in these series of silicon(IV) complexes is favored in the rank order I≈Br>Cl>F; i.e., increasing the softness of the halogeno ligand favors pentacoordination.  相似文献   

9.
Unexpected ortho interaction of the nitro group has been noticed during the mass spectral fragmentations of N-arylidene 2-nitrobenzenesulphenamides, where the molecular ions expel SO2 and N2 both in concerted and stepwise processes. Loss of a hydrogen or the substituent from this fragment leads to a very abundant ion in all the compounds studied. Based on chemical evidence and linked-scan studies, a 1,2-phenylenetropylium cation structure has been postulated for the [M–SO2–N2–H/substituent]+ ion.  相似文献   

10.
The effect of the dissociation energy of the C? X bond (X = H, F, Cl, Br, I) on the formation of benzimidazolium ions (b) by elimination of X from the molecular ions of ortho-substituted N,N-dimethyl-N′-phenylformamidines (I to V) has been investigated. No simple relation is observed between the intensities of ions b and the dissociation energy. Furthermore, the appearance potentials of ions b are not greatly affected by the dissociation energy, although differences of about 2.5 eV are expected for a simple cleavage reaction. The behaviour of the molecular ions of I to V is in accord with a two step addition-dissociation mechanism [M]+· → ab, and the highest activation energy is required in the first addition step. Similar mechanisms are known for aromatic substitution reactions in the condensed phase, but have not been observed for mass spectrometric fragmentations. The detection of additional kinetic energy T in the reaction products by an analysis of the metastable transitions [M]+· → b corroborates the proposed mechanism.  相似文献   

11.
Chiral, non-racemic 1,2-disubstituted ferrocenes have been prepared from monosubstituted ferrocene derivatives by amine-mediated ortho-directed reactions and subsequent partial reductive removal of the stereogenic ortho-directing group. It was found that the ortho-directing amino group of 2-substituted derivatives of N,N-dimethylaminoethyl-ferrocene and similar compounds can, after quaternisation with methyl iodide, be reductively removed with sodium borohydride to give 2-substituted methyl- or ethylferrocenes. In most cases the substituents I, Br, COOEt, P(O)Ph2 and CN tolerate the reaction conditions used. In addition, a few examples are reported that show how the use of LiTMP allows 2-bromo- and especially 2-cyano-substituted derivatives to be further ortho-lithiated and reacted to give 1,2,3-trisubstituted ferrocenes.  相似文献   

12.
A collision-induced dissociation study of a series of dinitroaromatic compounds was carried out using a tandem BB mass spectrometer. Fragmentation pathways were determined in the electron impact mode. Loss of NO2˙ from the molecular ion was observed In most of the investigated compounds. In some compounds loss of NO2˙ occurred only after loss of OH˙. In other compounds it was not observed at all because of competitive processes, such as loss of NO˙, CO2, CH2O, C2H4 or H2O. Loss of NO˙ was a major decomposition pathway, forming ‘dished peaks’ in some of the compounds having a nitro group ortho to a phenyl group, indicating a release of kinetic energy associated with the decomposition. Loss of OH˙ due to an ‘ortho effect’ occurred in compounds where a nitro group was ortho to a group containing a labile hydrogen, but was not observed when competitive processes such as loss of NO˙, NO2˙ or H2O occurred. ‘Nitro to nitrite’ isomerization was suggested to explain the decarboxylation process in 2,4- and 2,5-dinitrobenzoic acid and the loss of COH2 in 2,4-dinitroanisole.  相似文献   

13.
Intramolecular competition of variously substituted phenyl rings of benzophenone ketals in lithiation reactions proved to be a useful tool to study both ortho-directing ability and long-range effects of the substituents. The regioselectivities observed in the reaction of benzophenone ketals having one or two chloro substituents in one of the aryl rings with butyllithium complexed to N,N,N′,N″,N″-pentamethyldiethylenetriamine demonstrate the significance of both ortho- and meta-acidifying effect of the chloro substituents. The lithio species thus generated were carboxylated resulting in new polysubstituted benzoic acids.  相似文献   

14.
A series of substituted bisaryl phosphate compounds, (R1CH2)+ ArOP = O(O?)(OArR2R3), was analyzed and characterized by fast atom bombardment mass spectrometry. Abundant fragment ions were observed and correlated with the proposed structures. From fragmentation pattersn, ‘ortho effect’ reactions were demonstrated to have occurred when the phosphoryl oxygen reacted with the (CH2R1)+ and C?O(OCH3) substituents in the ortho position, relative to the phosphate group, and displaced the R1 and OCH3 groups, respectively, to produce phosphorus containing six-membered rings fused to the aryl moiety. When the (CH2R1)+ substituents were in the meta position relative to the phosphate group, the ‘ortho effect’ reactions were not observed. However, when the C?O(OCH3) substituent was in the meta position relative to the phosphate group, an abundant fragment ion containing a five-membered phosphate ring fused to the aryl ring was detected with the original phosphoryl oxygen ortho to both the phosphate oxygen and a formyl group, formed from the original C?O(OCH3) substituent. All other fragmentations not involving the ‘ortho effect’ reactions were nearly identical for the different structural isomers of the substituted bisaryl phosphate compounds.  相似文献   

15.
Hydrogen migrations in the molecular ions of 1,3-diphenylpropane, preceding the fragmentations to [C7H7]+ and [C7H8]+ ions, have been investigated by use of deuterated derivatives. By comparing the distribution of deuterium labels in the [C7(H, D)8]+ products from metastable molecular ions with the distribution patterns calculated for various exchange models, it is shown that the H migrations occur by two processes linked by a common intermediate: (i) exchange between hydrogen isotopes at the γ-methylene group and at the ortho positions of the phenyl group: (ii) exchange between hydrogen isotopes at the ortho and orthó positions in the intermediate. In these mechanisms the eight hydrogen isotopes at both benzylic positions and both the ortho and orthó positions of 1,3-diphenylpropane participate in a mutual exchange. A statistical equipartition of the hydrogen isotopes at these eight positions is not reached in metastable molecular ions, however. The distribution pattern of [C7(H, D)8]+ ions from the deuterium labelled compounds as a function of the mean number n of exchange cycles has been calculated according to this reaction model and compared with experimental results for unstable molecular ions, generated by 70 eV and 12 eV electrons, respectively, and metastable molecular ions. Good agreement is obtained for all compounds and n = 0.4–0.8 for unstable molecular ions and n = 5–8 for metastable ions. Therefore, the hydrogen exchange in the molecular ion of 1,3-diphenylpropane is a rather slow process. These results firmly establish the isomerization reaction involving the conversion of the molecular ion of 1,3-diphenylmethane to the intermediate and hence to the molecular ion of 7-(2-phenylethyl)-5-methylene cyclohexa-1,3-diene and preceding the fragmentations. The postulated intermediate is a true one which corresponds to a s?-complex type ion and which fragments to [C7H8]+ ions. Surprisingly, no isomerizations of the intermediate by hydrogen shifts within the protonated aromatic system (‘ring walks’) are observed.  相似文献   

16.
The mass spectrum of o-picolinotoluidide gives rise to three major fragments at m/z 184, m/z 169 and m/z 168, corresponding to the loss of CO from the molecular ion followed by the loss of ?H2 and ?H3 by independent pathways. It has been shown that the ortho methyl group and the nitrogen of the pyridine ring in the 2-position are involved in the formation of these three major fragments observed in the mass spectrum of o-picolinotoluidide. The mass spectrum of 2-(o-toluidino) pyridine, the molecular ion of which can resemble the [M? CO]+ ion in o-picolinotoluidide, also shows loss of CH3 and NH2 radicals from the molecular ions. Based on these observations coupled with the high resolution data, the mass analysed ion kinetic energy spectrometry and high voltage scans of these fragments in both the compounds, two mechanistic pathways have been proposed for the formation of these ions in o-picolinotoluidide.  相似文献   

17.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In the electron impact mass spectra of azomethines derived from various substituted aromatic aldehydes and diarninodicyanoethene the superposition of two ortho effects concurring with the azomethine group is apparent: one involving the amino group of the diaminodicyanoethene part accounts for the cyclization to [C5H3N4]+ ions and the other involving ortho substituents of the benzylidene part which can interact with the azomethine moiety is responsible for specific fragment ions, suppressing the typical fragmentations of azomethines. The ortho effect was studied for the o-nitro derivative by labelling experiments, analysis of metastable transitions and collisional activation comparing model ions, demonstrating that the specific [M-H2O]+˙ and [C7H5NO2]+˙ ions are the result of cyclization processes.  相似文献   

19.
Upon CA, ESI generated [M + H]+ ions of chalcone (benzalacetophenone) and 3-phenyl-indanone both undergo losses of H2O, CO, and the elements of benzene. CA of the [M + H]+ ions of 2-methoxy and 2-hydroxychalcone, however, prompts instead a dominant loss of ketene. In addition, CA of the [M + H]+ ions of 2-methoxy-β-methylchalcone produces an analogous loss of methylketene instead. Furthermore, the [M + D]+ ion of 2-methoxychalcone upon CA eliminates only unlabeled ketene, and the resultant product, the [M + D − ketene]+ ion, yields only the benzyl-d 1 cation upon CA. We propose that the 2-methoxy and 2-hydroxy (ortho) substituents facilitate a Nazarov cyclization to the corresponding protonated 3-aryl-indanones by mediating a critical proton transfer. The resultant protonated indanones then undergo a second proton transport catalysis facilitated by the same ortho substituents producing intermediates that eliminate ketene to yield 2-methoxy- or 2-hydroxyphenyl-phenyl-methylcarbocations, respectively. The basicity of the ortho substituent is important; for example, replacement of the ortho function with a chloro substituent does not provide an efficient catalyst for the proton transports. The Nazarov cyclization must compete with an alternate cyclization, driven by the protonated carbonyl group of the chalcone that results in losses of H2O and CO. The assisted proton transfer mediated by the ortho substituent shifts the competition in favor of the Nazarov cyclization. The proposed mechanisms for cyclization and fragmentation are supported by high-mass resolving power data, tandem mass spectra, deuterium labeling, and molecular orbital calculations.  相似文献   

20.
The H2 and CH4 chemical ionization mass spectra of a series of series of substituted benzoic acids and substituted benzyl alcohols have been determined. For the benzoic acids the major fragmentation reactions of the protonated molecule involve elimination of H2O or elimination of CO2, the latter reaction involving migration of the carboxylic hydrogen to the aromatic ring. For the benzyl alcohols the major fragmentation reactions of [MH]+ involve loss of H2O or CH2O, analogous to the CO2 elimination reaction for the benzoic acids. It is shown that the CO2 and CH2O elimination reactions occur only when a conjugated aromatic ring system is present, and that for the carboxylic acid systems, methyl groups and, to a lesser extent, phenyl groups are capable of migrating. The only discernible effect of substituents on the fragmentation of [MH]+ is an enhancement of the H2O loss reaction in the benzoic acid system when an amino, hydroxyl, or halogen substituent is ortho to the carboxyl function. This ‘ortho’ effect, which differs in scope from that observed in electron impact mass spectra, is attributed to an intramolecular catalysis by the ortho substituent of the 1,3 hydrogen migration in the carbonyl protonated acid followed by H2O elimination. Apparently, this route is favoured over the direct elimination of H2O from the carbonyl protonated acid, since the latter has a high activation energy barrier because of unfavourable orbital symmetry restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号