首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The 19F substituent chemical shifts (SCS) of meta- and para-benzoyl fluorides are found to correlate well with substituent parameters using the dual substituent parameter (DSP) equation, indicating that they reflect electronic perturbations induced by the substituent. The direction of the SCS values is such that donating substituents cause upfield shifts whilst acceptors cause downfield shifts. STO-3G calculations indicate that substituents induce only very small changes in π-electron density about the fluorine atom, but that these changes correlate reasonably well with the observed SCS values. For the para series, the slope of the relationship between δq and 19F SCS is 5000 ppm/electron, indicating the great sensitivity of the flourine atom to small changes in electron density.  相似文献   

2.
The 19F NMR shieldings for several remotely substituted rigid polycyclic alkyl fluorides with common sets of substituents covering a wide range of electronic effects were calculated using the DFT‐GIAO theoretical model. The level of theory, B3LYP/6–311+G(2d,p), was chosen based on trial calculations which gave good agreement with experimental values where known. The optimized geometries were used to obtain various molecular parameters (fluorine natural charges, electron occupancies on fluorine of lone pairs and of the C? F bond, and hybridization states) by means of natural bond orbital (NBO) analysis which could help in understanding electronic transmission mechanisms underlying 19F substituent chemical shifts (SCS) in these systems. Linear regression analysis was employed to explore the relationship between the calculated 19F SCS and polar substituent constants and also the NBO derived molecular parameters. The 19F SCS are best described by an electronegativity parameter. The most pertinent molecular parameters appear to be the occupation number of the NBO p‐type fluorine lone pair and the occupation number of the C? F antibonding orbital. This trend suggests that in these types of rigid saturated systems hyperconjugative interactions play a key role in determining the 19F SCS. Electrostatic field effects appear to be relatively unimportant. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
17O NMR chemical shifts and calculated (ab initio MO theory) electron densities are reported for a series of para-substituted acetophenones, X? C4H6? COCH3, where X = NH2, OCH3, F, Cl, CH3, H, COCH3, CN, NO2. The 17O shifts are very sensitive to the para substituent and cover a range of some 51 ppm. Donors induce upfield shifts and acceptors downfield shifts. The substituent chemical shifts (SCS) correlate precisely with σI and σR+ using the Dual Substituent Parameter (DSP) method. The derived transmission coefficients ρI and ρR indicate that polar and resonance mechanisms contribute approximately equally to the observed substituent effects. The shifts also correlate well with calculated π-electron densities (slope = 1500 ppm per electron) confirming their electronic origin. λ values are also reported, and the role of the average excitation energy, ΔE, in determining 17O SCS values is discussed. It is concluded that variations in ΔE are minor and that the local Δ-electron density is the dominant feature controlling 17O SCS values.  相似文献   

4.
An equation has been developed which relates ortho or C-β 13C substituent chemical shifts (SCS) to the ortho proton–proton coupling constant in the unsubstituted member of a conjugated series. This method is an extension of previous equations which have been used to predict ortho 1H SCS values, and has its origin in a relationship between bond order and SCS values. The equation was derived from ortho 13C data in 2-naphthalenes and monosubstituted benzenes and its application to other unsaturated series is discussed.  相似文献   

5.
The results of a correlative analysis indicate that the 19F substituent chemical shifts (SCS) of 4-substituted bicyclo[2.2.1]hept-1-y1 fluorides are essentially a manifestation of electronegativity effects which are opposite in sign to those previously disclosed for the corresponding 4-substituted bicyclo[2.2.2]oct-1-y1 fluorides.  相似文献   

6.
At the present time no completely satisfactory quantum mechanical calculations exist for carbon, proton or fluorine chemical shifts in various substituted aromatic or olefinic systems. However, the chemical shifts in such systems have been shown to be well correlated by a linear multiple regression analysis with the Swain and Lupton field and resonance para meters ? and ?, and the semiempirical parameter Q. The utility of Q in testing substituent stereochemistry has been exemplified previously. Here the applications of the complete regression analysis to a wide variety of different systems for the three nuclei are given. The correlation is also shown to apply to selenium in substituted selenophenes. The 13C chemical shifts for a series of ortho substituted toluenes are presented and comparisons made with other ortho disubstituted benzenes.  相似文献   

7.
The proton and carbon chemical shifts for a series of tetrakis(p-substituted phenyl)ethylenes are described. Assignments followed routine substituent chemical shift trends. Both proton and carbon chemical shifts ortho to the varying substituent follow the empirical parameter, Q. The ethylene carbon chemical shifts are proportional to those at the position para to the varying substituent.  相似文献   

8.
15N NMR data of a series of 3‐alkyl[aryl] substituted 5‐trichloromethyl‐1,2‐dimethyl‐1H‐pyrazolium chlorides (where the 3‐substituents are H, Me, Et, n‐Pr, n‐Bu, n‐Pe, n‐Hex, (CH2)5CO2Et, CH2Br, Ph and 4‐Br‐C6H4), are reported. The 15N substituent chemical shifts (SCS) parameters are determined and these data are compared with the 13C SCS values and data obtained by MO calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The 13C and proton NMR spectra of six porphyrins bearing the substituent orientation characteristic of the natural “Type-IX” arrangement are reported and assigned. Significant concentration effects in the spectra of the free base porphyrins, together with the broadening of the Cα (and occasionally Cβ) carbon resonances due to NH tautomerism caused a significant loss of data in these spectra. However, the spectra of the corresponding zinc(II) porphyrins (with addition of excess pyrrolidine) show that both these extraneous effects are completely removed to give well-resolved spectra with accurately reproducible chemical shifts. These spectra are assigned and an analysis of the chemical shifts allows the deduction of substituent chemical shift (SCS) parameters for the peripheral substituents at the beta and meso carbons. There is no global effect of these beta substituents, the beta carbon SCS being confined to the immediate pyrrole ring, and the meso carbon SCS to the two adjacent pyrrole rings. The SCS parameters are analyzed and it is shown how they can be used to predict the peripheral and meso carbon chemical shifts of any porphyrin bearing the substituents discussed.  相似文献   

10.
13C chemical shifts for several series of cis- and trans-N-alkylimines and oxaziridines bearing para-substituted C-phenyl rings are reported and correlated with dual substituent parameters. The 13C?N and oxaziridine ring carbon shifts correlate primarily with the inductive/field parameters, σ1, whereas both resonance and inductive terms generally contribute about equally to the long-range substituent effects on alkyl side-chain chemical shifts. Correlations on diastereoisomeric imines show that the transmission of substituent effects can be significantly affected by the EZ configuration. Aromatic carbon chemical shifts in imines are discussed in relation to the EZ configuration and the conformation around the aryl—imino bond.  相似文献   

11.
The 19F and 31P NMR spectral parameters of a series of meta and para substituted phenylphosphonic difluorides were found to be linearly related to the substituent parameters: the phosphorus chemical shifts correlated with Hammett's σ constant, the fluorine chemical shifts with Taft's σR parameter and the phosphorus–fluorine coupling constants with σ+.  相似文献   

12.
Methyl carbon chemical shifts have been assigned for methylbenzoic acids dissolved in CDCl3, and for methylbenzoate anions obtained by dissolving these acids in aqueous NaOH solution. Chemical shifts have been interpreted by means of additive substituent parameters which reflect conformational features existing between adjacent substituents. Barriers to rotation of a methyl group adjacent to a carboxyl or carboxylate group have been estimated to differ by less than 2 kJ mol?1 from the barrier of a methyl group in o-xylene.  相似文献   

13.
The complete analyses of the 19F spectra of some fluorinated benzofurans are given. These provide an unambiguous determination of the substituent position in these compounds. Comparison of the 19F SCS and coupling constants in the benzofuran, benzothiophene and benzene series shows that 19F spectral parameters can be transposed from the benzene series with caution. A large increase in the para F? F coupling with ring closure of the hetero-ring is noteworthy. A long-range through-space 8JH is reported which arises from the proximity of the 3 carboethoxy methyl group and the C4 fluorine in these molecules.  相似文献   

14.
A series of 2‐aryl‐2‐hydroxy‐1,1,3,3‐tetramethyl‐5,8‐dioxaspiro[3.4]octanes ( 1 ), 3‐aryl‐3‐hydyoxyl‐2,2,4,4‐tetyramethylcyclobutanones ( 2 ), and l‐aryl‐2,2,4‐trimethyl‐1,3‐pentadiones ( 3 ) were studied using 13C NMR analyses. The chemical shifts of C‐c are dependent on the substituent groups on the phenyl ring for compounds 1 (ρ =‐0.966, R2 = 0.987) and 2 (ρ = ?1.378, R2 = 0.998). The chemical shifts of C‐a follow a similar trend (ρ =?0.926, R2 = 0.989). In the case of compounds 3 , C‐c yielded the opposite trend with very poor correlation coefficiency (ρ = 1.22, R2 = 0.179). This result reveals the field effect of a polar bond and resonance‐induced changes in pi electron‐density at C‐1 on the cyclobutanering series.  相似文献   

15.
Two series of 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines have been synthesized using different methods of conventional and microwave‐assisted synthesis, and linear free‐energy relationships have been applied to the 13C NMR chemical shifts of the carbon atoms of interest. The substituent‐induced chemical shifts have been analyzed using single substituent parameter and dual substituent parameter methods. The presented correlations describe satisfactorily the field and resonance substituent effects having similar contributions for C1 and the azomethine carbon, with exception of the carbon atom in para position to the substituent X. In both series, negative ρ values have been found for C1′ atom (reverse substituent effect). Quantum chemical calculations of the optimized geometries at MP2/6‐31G++(d,p) level, together with 13C NMR chemical shifts, give a better insight into the influence of the molecular conformation on the transmission of electronic substituent effects. The comparison of correlation results for different series of imines with phenyl, 4‐nitrophenyl, 2‐pyridyl, 3‐pyridyl, 4‐pyridyl group attached at the azomethine carbon with the results for 4‐substituted N‐[1‐(pyridine‐3‐ and ‐4‐yl)ethylidene]anilines for the same substituent set (X) indicates that a combination of the influences of electronic effects of the substituent X and the π1‐unit can be described as a sensitive balance of different resonance structures.  相似文献   

16.
Carbon-13 chemical shifts of sixteen monosubstituted ethylenes were obtained. In order to explain the chemical shifts, σ and π electron densities of these compounds are calculated by the σ-included ω-HMO method.
  • 1 See Ref. 8.
  • A linear relationship exists between carbon-13 chemical shifts and the calculated electron densities, and also between substituent constants and electron densities. A slope of unity is obtained between the chemical shifts of α carbons of monosubstituted ethylenes and those of carbons adjacent to the substituents in monosubstituted benzenes. On the other hand, a plot of chemical shifts of Cortho of benzene derivatives against that of the β carbon in ethylene derivatives gives a slope of 3. These slopes can be explained by the calculated electron densities. A slope of 4/3 is obtained between the direct coupling constant 1J(C? H) of the α carbon in monosubstituted ethylenes and that in the corresponding substituted methanes.  相似文献   

    17.
    Carbon-13 NMR spectroscopic data of eleven tetracyclo[4.1.0.02,4.03,5]heptanes, two tetracyclo-[5.1.0.02,4.03,5]octanes and twelve tricyclo[4.1.0.02,7]hept-3-enes are reported. In the tetracycloheptanes, halogens located at the 7-position cause large δ substituent effects. endo-Halogens shift the C-4 signal to lower field by about 6 ppm, while exo-haolgens produce upfield shifts of the C-3 signal, which are dependent on the nature of the halogen and reach a maximum of 9.1 ppm in the case of fluorine. An orbital model is proposed to explain the δ upfield shifts. The compounds containing fluorine reveal a connection between the δ substituent effects and the corresponding 13C? 19F coupling constants. Substituents in the 5 position of tricycloheptenes are γ-substituents of C-1, C-3 and C-7 and produce downfield shifts of the absorptions of these nuclei. Their dependence on the nature of the substituent follows approximately those in 1-substituted adamentanes; in the case of C-7, however, their magnitude by far exceeds the adamantane values, bromine (15.5 ppm) being most effective.  相似文献   

    18.
    Carbon-13 chemical shifts are reported for 16 para-substituted phenyl isothiocyanates measured at 1 and 10 mol % in chloroform-d solution. Data for the ? N?C?S group were not obtained at 1 mol %, but concentration effects for the other resonances were negligible. Hammett, dual substituent parameter (DSP) and DSP-nonlinear resonance (DSP-NLR) analyses were used to evaluate substituent effects on the substituent chemical shifts (SCS) for the ipso-carbon (C-1), C-2, and the ? N?C?S carbon atoms. A good Hammett correlation was observed for C-1 (νp+ = 8.1 ppm, r = 0.98 at 1 mol %) but was improved for the higher order correlations with the following results, DSP:ρ I = 5.4, ρR° = 22.2, r = 0.998; DSP-NLR: ρI = 5.6, ρR° = 20.5, ? = ?0.22, r = 0.999. The 10 mol % data were very similar except the value of ? was ?0.26 and confirms the phenyl-bonded ? N?C?S moiety as a mild electron acceptor substituent. Hammett correlations were unsuccessful for the C-2 data, but fairly good results were obtained from the higher order analyses. For the 1 mol % data, DSP: νI = 1.6, νR° = ?2.0, r = 0.976; DSP-NLR: νI = 1.8, νR° = ?2.6, ? = 1.1, r = 0.982. Excellent correlations were obtained for the 10 mol % ? N?C?S carbon data. Hammett: νp° = 6.2, r = 0.997; DSP: νI = 5.9, νR° = 7.0, r = 0.997; DSP-NLR: νI = 5.8, νR° = 7.6, ? = 0.25, r = 0.997. The positive ν values in these three correlations contrast the negative values usually observed for carbonyl and thiocarbonyl carbons, and more closely parallel results previously reported for the β-carbon of styrenes and benzylidene anilines with para-substituents in the aniline ring.  相似文献   

    19.
    Abstract

    A series of N-phenyl-P,P,P-triarylphospha-λ5-azenes (1) as well as their l5N labeled analogs was synthesized. The 13C, 31P, and 15N NMR spectra of this series and those of two other series of related compounds, namely triarylphosphines (2) and triarylphosphine oxides (3), were measured and are reported. Many satisfactory correlations using the mono-substituent parameter (MSP) and the Taft dual-substituent parameter (DSP) treatments with the 13C substituent chemical shifts (SCS), 31P SCS, 15N SCS and the one bond P-N, P-C and C-N coupling constants were observed and will be discussed. Thus, for example, the 31P and 15N chemical shifts in 1 correlated with [sgrave]?with negative slopes while the 31P chemical shifts in 3 correlated with those in 1 with a slope of 2.0. The 13C chemical shifts in 1 correlated excellently with the corresponding ones in 3 with slopes very close to unity. The substituent effects on the chemical shifts of the various nuclei were shown to be mainly due to changes in the charge distribution on those nuclei. In 1 the one bond P-N and P-C coupling constants correlated with [sgrave]p and [sgrave]R respectively. The one bond P-C coupling constants of 1 correlated quite well with those of 3 with a slope of 0.93 while the corresponding correlation of 1 with 2 was quite poor. Taft DSP treatment of 1JPCin 1 and 3 were quite similar, ρI and ρR were both negative and ρR was much larger than ρI. Series 2 showed behavior which was different from that shown by 1 and 3 but similar to that shown by other systems with a lone electron pair on the atom bound to the phenyl ring. The substituent effects on the one bond P-N, P-C and C-N coupling constants will be discussed in terms of bonding and hybridization changes between the directly bonded nuclei.  相似文献   

    20.
    13C NMR spectra of p- and m-substituted phenyl N-methylcarbamates, phenyl N,N-dimethylcarbamates and p- and m-substituted phenyl propionates were recorded, and their para 13C SCS (substituent chemical shifts) were analysed by DSP (dual substituent parameters) and DSP-NLR (non-linear resonance) equations. It was found that the fixed substituent Y, ? OCONHCH3, ? OCON(CH3)2 and ? OCOC2H5, were all mild in the sense that DSP analysis gave a good correlation, leaving little room for improvement by the DSP-NLR treatment. Further, the three series of compounds gave similar ρI and ρR values (para derivatives, 3.2–3.3 and 17.7–18.0; meta derivatives, 5.1–5.2 and 21.8–22.0). Examination of the corresponding analyses of similar compounds indicated that the ρI and ρR values and, hence, their ratio ρRR = λ, depended primarily on the nature of the atom through which the fixed substituent Y (e.g. α-C, α-N and α-O) was bonded to the aromatic ring when the Y substituents are mild. The extent of this tendency for compounds with active fixed substituents is also discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号