首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Specific reactivity of cis- and trans-indanediols has been investigated under dimethyl ether (DME) chemical ionization conditions. Several unusual species, such as [M + 29]+ and [M + 27]+ ions, are produced in high yield. From DME pressure variations and tandem mass spectrometry experiments (low-energy collisions with Ar and NH3) including some labeled compounds, it appears that [M + 29]+ ions are generated by nucleophilic substitution according to a SNi pathway from the proton bound[M + DMEH]+ adduct ion. On the other hand, [M + 27]+ ions are produced from the covalent [M + DME ? H]+ adduct ions via a stepwise process inducing a water loss. This latter dehydration occurs from the adducts prepared by [DME ? H]+ attachment to the homobenzylic hydroxy site, which allows internal proton transfer from the charged position to the benzylic hydroxy group, promotingthe loss of water. In addition, trans indanediol labeled with 18O has been used to obtain evidence for the regioselectivity of both water-loss mechanisms from the benzylic site.  相似文献   

2.
Collisionally activated decompositions and ion-molecule reactions in a triple-quadrupole mass spectrometer are used to distinguish between cis- and trans-1,2-cyclopentanediol isomers. For ion kinetic energies varying from 5 eV to 15 eV (laboratory frame of reference), qualitative differences in the daughter ion spectra of [MH]+ are seen when N2 is employed as an inert collision gas. The cis ?1,2-cyclopentanediol isomer favors H2O elimination to give predominantly [MH- H2O]+. In the trans isomer, where H2O elimination is less likely to occur, the rearrangement ion [HOCH2CHOH]+ exists in significantly greater abundance. Ion-molecule reactions with NH3 under single-collision conditions and low ion kinetic energies can provide thermochemical as well as stereochemical information. For trans ?1,2-cyclopentanediol, the formation of [NH4]+ by proton transfer is an exothermic reaction with the maximum product ion intensity at ion kinetic energies approaching 0 eV. The ammonium adduct ion [M + NH4]+ is of greater intensity for the trans isomer. In the proton transfer reaction with the cis isomer, the formation of [NH4]+ is an endothermic process with a definite translational energy onset. From this measured threshold ion kinetic energy, the proton affinity of cis ?1,2-cyclopentanedioi was estimated to be 886 ± 10 kJ mol?1.  相似文献   

3.
The thermospray mass spectrometry (TSP/MS) of five N-methylcarbamates is presented. This is the first time that ions other than [M + H]+ and [M + NH4]+ have been reported using positive TSP/MS. Protonation of ROCONHCH3 yields the [CH3NH2CO] ion, with formation of the ion–molecule adduct [ROCONHCH3 · CH3NH2CO] through elimination of CO from [CH3NH2CO], and the adduct [M + 75], [ROCONHCH3 · OCONH2CH3], is also obtained.  相似文献   

4.
Ab initio molecular orbital calculations with moderately large polarization basis sets and including valence-electron correlation have been used to examine the structure and dissociation mechanisms of protonated methanol [CH3OH2]+. Stable isomers and transition structures have been characterized using gradient techniques. Protonated methanol is found to be the only stable isomer in the [CH5O]+ potential surface. There is no evidence for a tightly-bound complex, [HOCH2]+…?H2, analogous to the preferred structure [CH3]+…?H2 of [CH5]+. Protonated methanol is found to possess a pyramidal arrangement of bonds at the oxygen atom with a barrier to inversion of 8kJ mol?1. The lowest energy fragmentation pathways are dissociation into methyl cation and water (predicted to require 284 kJ mol?1 with zero reverse activation energy) and loss of molecular hydrogen (endothermic by 138 kJ mol?1 but with a reverse activation barrier of 149 kJ mol?1). The results offer a possible explanation as to why production of [CH2OH]+ from the reaction of methyl cation with water is not observed. Other dissociation processes examined include loss of a hydrogen atom to yield the methylenoxonium radical cation or methanol radical cation (requiring 441 and 490 kJ mol?1, respectively) and loss of a proton to yield neutral methanol (requiring 784 kJ mol?1).  相似文献   

5.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

6.
Under ammonia chemical ionization (CI) conditions triarylpropenones undergo hydrogen radical-induced olefinic bond reduction on metal surfaces, resulting in [M + 2H + NH4]+ ions corresponding to the ammonium adduct of the saturated ketone. The decomposition of the adduct ions, [MNH4]+ and [M + 2H + NH4]+, was studied by collision-induced dissociation mass-analysed ion kinetic energy (CID-MIKE) spectroscopy in a reverse geometry instrument. From the CID-MIKE spectra of the [MNH4]+, [M + 2H + NH4]+, [MND4]+ and [M + 2D + ND4]+ ions it is clear that the fragmentation of the adduct ions involves loss of NH3 followed by various cyclization reactions resulting in stable condensed ring systems. Elimination of ArH and ArCHO subsequent to the loss of NH3 and formation of aroyl ion are characteristic decomposition pathways of the [MNH4]+ ions, whereas elimination of ArCH3 and formation of [ArCH2]+ are characteristic of the [M + 2H + NH4]+ ions of these propenones.  相似文献   

7.
The mass spectra of 30 sulfinamide derivatives (RSONHR', R' alkyl or p-XC6H4) are reported. Most of the spectra had peaks attributable to thermal decomposition products. For some compounds these were identified by pyrolysis under similar conditions to be: RSO2NHR', RSO2SR, RSSR and NH2R' (in all kinds of sulfinyl amides); RSNHR' (in the case of arylsulfinyl arylamides); RSO2C6H4NH2, RSOC6H4NH2 and RSC6H4NH2 (in the case of arylsulfinyl arylamides of the type of X = H) The mass spectra of the three thermally stable compounds showed that there are several kinds of common fragment ions. The mass spectra of the thermally labile compounds had two groups of ions; (i) characteristic fragment ions of the intact molecules and (ii) the molecular ions of the thermal decomposition products. It was concluded that the sulfinamides give the following ions after electron impact: [M]+, [M ? R]+, [M ? R + H]+, [M ? SO]+, [RS]+, [NHR']+, [NHR' + H]+, [RSO]+, [RSO + H]+, [R]+, [R + H]+, [R']+ and [M ? OH]+, and that the thermal decomposition products give the following ions: [RSO2SR]+, [RSSR]+, [M ? O]+, [M + O]+ and [RSOC6H4NH2]+.  相似文献   

8.
Electron impact induced fragmentations of 2-amino-as-triazino[6,5-c]quinoline and its 2-methylamino, 2-dimethylamino and 2-benzylamino analogues have been investigated. The main primary decomposition route of both the singly and the doubly charged molecular ions is the N2 loss. For the singly charged ions the critical energy of this reaction is 110±10 kJ mol?1 and the kinetic energy release is 61±4 kJ mol?1. For the doubly charged ions these values are 90±10 kJ mol?1 and 5±2 kJ mol?1, respectively, indicating a significantly different reaction profile. The further fragmentation of [M? N2]+˙ ions consists of radical eliminations from the 2-amino group with cleavages of the α- and β-bonds. Here a significant substituent effect is eliminations found suggesting an intramolecular cyclization reaction with a substituent migration. D and 15N labelling experiments have shown a minor extent of randomization of the labelled atoms and the occurrence of other hidden skeletal rearrangements during the fragmentation.  相似文献   

9.
Homoadamantane derivatives can be divided into two groups according to their mass spectra. To the first group belong compounds with electron attracting substituents (COOH, CI, COOCH3, Br); compounds with electron releasing substituents (OCH3, OH, NH3, NHCOCH3) constitute the second group. The most characteristic feature of the first group compounds is the splitting off of the substituent. The hydrocarbon fragment [C11H17]+ thus formed then loses olefin molecules with the formation of corresponding ionic species C11?nH17?2n. The 3-substituted compounds of this group undergo thermal Wagner-Meerwein type rearrangements into adamantane derivatives, resulting in the [C10H15]+ (m/e 135) ion formation; this is the main difference between 1- and 3-substituted homoadamantanes. The series of [CnH2n?6X]+ ions (where X = OCH3, OH, NH2, NHCOCH3, n = 6 to 10) are characteristic of the mass spectra of the second group compounds, the ion [C6H6X]+, [M ? C5H11]+ being the most abundant. The intensity ratio of [M ? C5H11]+ to [M ? C4H9]+ ions is 10:1 for 1-substituted and 3:1 for 3-substituted compounds of this group, allowing the location of the substituent. Some individual features of the spectra are also reported.  相似文献   

10.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

11.
The mass spectral behaviour of nine 1,3-dioxolanes, seven 1,3-dithiolanes and seven 1,3-oxathiolanes was studied under chemical ionization conditions with ammonia, isobutane, methane, acetone, acetone-d6 or pentan-3-one as reagent gas. The proton affinity of the first members in each series was not large enough for ammonia to protonate them; instead, the ionization took place through unstable [M + NH4]+ ions. Isobutane, which gave rise to abundant [M + H]+ ions in all cases, was the best reagent gas for the determination of the molecular mass. Methane chemical ionization caused extensive fragmentations either through ring cleavage or through the elimination of the largest substituent from ring positions 2 as a neutral hydrocarbon. The ketones used as reagent gas reacted to form adduct ions. In the case of dioxolanes and oxathiolanes, the [M + RCO]+ adduct ion decomposed through ring opening and then, as a consequence of intramolecular nucleophilic substitution, through the elimination of a neutral carbonyl compound. Resonance-stabilized dioxolanylium and oxathiolanylium ions were obtained for dioxolanes and oxathiolanes, respectively. This reaction was almost non-existent for the dithiolanes.  相似文献   

12.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

14.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

15.
Dilute mixtures of C6H6 or C6D6 in He provide abundant [C6H6] or [C6D6] ions and small amounts of [C6H7]+ or [C6D7]+ ions as chemical ionization (CI) reagent ions. The C6H6 or C6D6 CI spectra of alkylbenzenes and alkylanilines contain predominantly M ions from reactions of [C6H6] or [C6D6] and small amounts of MH+ or MD+ ions from reactions of [C6H7]+ or [C6D7]+. Benzene CI spectra of aliphatic amines contain M, fragment ions and sample-size-dependent MH+ ions from sample ion-sample molecules reactions. The C6D6 CI spectra of substituted pyridines contain M and MD+ ions in different ratios depending on the substituent (which alters the ionization energy of the substituted pyridine), as well as sample-size-dependent MH+ ions from sample ion-sample molecule reactions. Two mechanisms are observed for the formation of MD+ ions: proton transfer from [C6D6] or charge transfer from [C6D6] to give M, followed by deuteron transfer from C6D6 to M. The mechanisms of reactions were established by ion cyclotron resonance (ICR) experiments. Proton transfer from [C6H6] or [C6D6] is rapid only for compounds for which proton transfer is exothermic and charge transfer is endothermic. For compounds for which both charge transfer and proton transfer are exothermic, charge transfer is the almost exclusive reaction.  相似文献   

16.
The analytical potential of negative ion chemical ionization (NICI) mass spectrometry utilizing dibromodifluoro-methane (CF2Br2) and iodomethane (CH3I)/methane (CH4) as reagent gases is examined. The NICI mass spectrum of CF2Br2 contains Br?, [HBr2]? and [CF2Br3]? anions. Weak acids (i.e. those acids with approximately ΔH°(acid) values between 1674 and 1464 kJ mol?1) react with Br? to produce minor yields of the hydrogen?bonded bromide attachment [MH + Br]? anion or are unreactive. Strong acids (i.e. those acids with approximately ΔH°(acid) > 1464 kJ mol?1) produce primarily [MH + Br]? anions with a minor yield of proton transfer [M ? H]? anion. The NICI spectrum of CH3I/CH4 is dominated by I?. Weak acids react with I? to yield minor amounts of [MH + 1]? or are unreactive. Strong acids produce only [MH + l]? anions. From a consideration of the gas-phase basicity of the halide anion and the binding energy of the hydrogen-bonded halide attachment adduct, thermochemical data are used as a potential guide to rationalize or predict the ions observed in NICI mass spectra.  相似文献   

17.
The kinetics and mechanism by which monochloramine is reduced by hydroxylamine in aqueous solution over the pH range of 5–8 are reported. The reaction proceeds via two different mechanisms depending upon whether the hydroxylamine is protonated or unprotonated. When the hydroxylamine is protonated, the reaction stoichiometry is 1:1. The reaction stoichiometry becomes 3:1 (hydroxylamine:monochloramine) when the hydroxylamine is unprotonated. The principle products under both conditions are Cl, NH+4, and N2O. The rate law is given by ?[d[NH2Cl]/dt] = k+[NH3OH+][NH2Cl] + k0[NH2OH][NH2Cl]. At an ionic strength of 1.2 M, at 25°C, and under pseudo‐first‐order conditions, k+= (1.03 ± 0.06) ×103 L · mol?1 · s?1 and k0=91 ± 15 L · mol?1 · s?1. Isotopic studies demonstrate that both nitrogen atoms in the N2O come from the NH2OH/NH3OH+. Activation parameters for the reaction determined at pH 5.1 and 8.0 at an ionic strength of 1.2 M were found to be ΔH? = 36 ± 3 kJ · mol–1 and Δ S? = ?66 ± 9 J · K?1 · mol?1, and Δ H? = 12 ± 2 kJ · mol?1 and Δ S? = ?168 ± 6 J · K?1 · mol?1, respectively, and confirm that the transition states are significantly different for the two reaction pathways. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 124–135, 2006  相似文献   

18.
From a collisional activation spectral study it has been found that certain triterpene alcohols with an ursane or oleanane skeleton undergo oxidation to the corresponding ketones under chemical ionization (NH3) conditions giving rise to abundant [M + NH4 ? 2]+ ions. Mass-analysed ion kinetic energy and B2/E scan results indicate that both [M + NH4]+ and [M + N2H7 ? 2]+ ions contribute to the formation of the [M + NH4 ? 2]+ ion.  相似文献   

19.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

20.
The ammonia chemical ionization (CI/[NH4+]) mass spectra of a series of diastereomeric methyl and benzyl ethers derived from 3-hydroxy steroids (unsaturated in position 5 and saturated) have been studied. The adduct ions [M+NH4]+ and [MH]+ and the substitution product ions [M+NH4? ROH]+ (thereafter called [MsH]+) are characterized by an inversion in their relative stabilites in relation to their initial configuration. [M+NH4]α+ and [MH]α+ formed from the α-Δ5-steroid isomers are stabilized by the presence of a hydrogen bond which is not possible for the β-isomers. This stereochemical effect has also been observed in the mass analysed ion kinetic energy (MIKE) spectra of [M+NH4]+ and [MH]+. The MIKE spectra of [MsH]+ indicate that those issued from the β-isomers are more stable than the one originating from the α-isomers. This behavior is also observed in the first field free region (HV scan spectra) for [MH]+, [MsH]+ and [M+NH4]+ which are precursors of the ethylenic carbocations (base peak in the conventional CI/[NH4]+ spectra). Mechanisms, such as SN1 and SNi, have been ruled out for the formation of [MsH]+, but instead the data support an SN2 mechanism during the ion-molecule reaction between [M+NH4]+ and NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号