首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

2.
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding.  相似文献   

3.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   

4.
The hydroxamic acids (RC(O)NHOH, HA) exhibit diverse biological activity, including hypotensive properties associated with formation of nitroxyl (HNO) or nitric oxide (NO). Oxidation of two HAs, benzohydroxamic and acetohydroxamic acids (BHA, AHA) by [Fe(CN)5NH3]2? or [Fe(CN)6]3? was analyzed by spectroscopic, mass spectrometric techniques, and flow EPR measurements. Mixing BHA with both Fe(III) reactants at pH 11 allowed detecting the hydroxamate radical, (C6H5)C(O)NO˙?, as a one-electron oxidation product, as well as N2O as a final product. Successive UV–vis spectra of mixtures containing [Fe(CN)5NH3]2? (though not [Fe(CN)6]3?) at pH 11 and 7 revealed an intermediate acylnitroso-complex, [Fe(CN)5NOC(O)(C6H5)]3? (λmax, 465 nm, very stable at pH 7), formed through ligand interchange in the initially formed reduction product, [Fe(CN)5NH3]3?, and characterized by FTIR spectra through the stretching vibrations ν(CN), ν(CO), and ν(NO). Free acylnitroso derivatives, formed by alternative reaction paths of the hydroxamate radicals, hydrolyze forming RC(O)OH and HNO, postulated as precursor of N2O. Minor quantities of NO are formed only with an excess of oxidant. The intermediacy of HNO was confirmed through its identification as [Fe(CN)5(HNO)]3? (λmax, 445 nm) as a result of hydrolysis of [Fe(CN)5(NOC(O)(C6H5)]3? at pH 11. The results demonstrate that hydroxamic acids behave predominantly as HNO donors.  相似文献   

5.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

6.
A series of lead(II) coordination polymers containing [N(CN)2]? (DCA) or [Au(CN)2]? bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)2] ( 1 ), [Pb(terpy)(DCA)2] ( 2 ), [Pb(terpy){Au(CN)2}2] ( 3 ), [Pb(4′‐chloro‐terpy){Au(CN)2}2] ( 4 ) and [Pb(4′‐bromo‐terpy)(μ‐OH2)0.5{Au(CN)2}2] ( 5 )) was spectroscopically examined by solid‐state 207Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone‐pair activity. Two new compounds, 2 and [Pb(4′‐hydroxy‐terpy){Au(CN)2}2] ( 6 ), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)2]? polymers). 207Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δiso=?3090 ppm and Ω=389 ppm for 1 (the least basic) to δiso=?1553 ppm and Ω=2238 ppm for 3 (the most basic)). The trends observed in 207Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb? N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p‐orbital character and show a strong correlation to the 207Pb NMR chemical shift parameters. Preliminary trends suggest that 207Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone‐pair activity.  相似文献   

7.
Within the second funding period of the SPP 1708 “Material Synthesis near Room Temperature”,which started in 2017, we were able to synthesize novel anionic species utilizing Ionic Liquids (ILs) both, as reaction media and reactant. ILs, bearing the decomposable and non-innocent methyl carbonate anion [CO3Me], served as starting material and enabled facile access to pseudohalide salts by reaction with Me3Si−X (X=CN, N3, OCN, SCN). Starting with the synthesized Room temperature Ionic Liquid (RT-IL) [nBu3MeN][B(OMe)3(CN)], we were able to crystallize the double salt [nBu3MeN]2[B(OMe)3(CN)](CN). Furthermore, we studied the reaction of [WCC]SCN and [WCC]CN (WCC=weakly coordinating cation) with their corresponding protic acids HX (X=SCN, CN), which resulted in formation of [H(NCS)2] and the temperature labile solvate anions [CN(HCN)n] (n=2, 3). In addition, the highly labile anionic HCN solvates were obtained from [PPN]X ([PPN]=μ-nitridobis(triphenylphosphonium), X=N3, OCN, SCN and OCP) and HCN. Crystals of [PPN][X(HCN)3] (X=N3, OCN) and [PPN][SCN(HCN)2] were obtained when the crystallization was carried out at low temperatures. Interestingly, reaction of [PPN]OCP with HCN was noticed, which led to the formation of [P(CN)2], crystallizing as HCN disolvate [PPN][P(CN⋅HCN)2]. Furthermore, we were able to isolate the novel cyanido(halido) silicate dianions of the type [SiCl0.78(CN)5.22]2− and [SiF(CN)5]2− and the hexa-substituted [Si(CN)6]2− by temperature controlled halide/cyanide exchange reactions. By facile neutralization reactions with the non-innocent cation of [Et3HN]2[Si(CN)6] with MOH (M=Li, K), Li2[Si(CN)6] ⋅ 2 H2O and K2[Si(CN)6] were obtained, which form three dimensional coordination polymers. From salt metathesis processes of M2[Si(CN)6] with different imidazolium bromides, we were able to isolate new imidazolium salts and the ionic liquid [BMIm]2[Si(CN)6]. When reacting [Mes(nBu)Im]2[Si(CN)6] with an excess of the strong Lewis acid B(C6F5)3, the voluminous adduct anion {Si[CN⋅B(C6F5)3]6}2− was obtained.  相似文献   

8.

In an attempt to synthesize the complex [Fe(CN)5(N2)]3- by reaction of Na[Fe(CN)5(NO)]·2H2O with azide followed by treatment with NO[SbCl6], a similar method to that used by Feltham to obtain trans-[RuCl(N2)(das)2]Cl2 from trans-[RuCl(NO)(das)2]Cl2, we found spectroscopic evidence that excess azide reacts with the CN- ligands to generate tetrazolato groups C-coordinated to Fe. Initial results suggest that the obtained compound is sodium azidotris(2H-tetrazolato)(5H-tetrazolato)iron(0). The spectroscopic evidence also indicates that these heterocycles are destroyed by reaction with NO[SbCl6], and the CN- groups are regenerated. Here we present the characterization of these complexes by IR, 13C NMR, conductivity measurements, elemental analysis and magnetic susceptibility.  相似文献   

9.
Pseudoelement Compounds. XII. [1] On the Characterization of 1,1,2,3,3-Pentacyanopropenide in Unidentate and Bidentate Function. Syntheses of Complexes of the Type [MX(PPh3)n] (M = CuI, AgI; X = NCC{C(CN)2}2; n = 2, 3) 1,1,2,3,3-Pentacyanopropenide is characterized as unidentate and bidentate ligand. For that reason compounds of the types [MX(PPh3)3] ( 6 ) and [MX(PPh3)2]2 ( 8 ) (M = CuI, AgI) are synthesized. In the complexes 6 the ionic ligand is coordinated unidentately through an end-on nitrile group of a C(CN)2 unit and in the dimeric complexes 8 bidentately bridging through the N atoms of a C(CN)2 moiety too. The compounds are characterized by 13C NMR, 31P NMR and IR spectroscopy. The crystal structure of [AgX(PPh3)3] is presented and the structural parameters of the anion in this complex and in [CuX(PPh3)2]2 [X = NCC{C(CN)2}2] are compared.  相似文献   

10.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

11.
Starting from fluoridosilicate precursors in neat cyanotrimethylsilane, Me3Si?CN, a series of different ammonium salts [R3NMe]+ (R=Et, nPr, nBu) with the novel [SiF(CN)5]2? and [Si(CN)6]2? dianions was synthesized in facile, temperature controlled F?/CN? exchange reactions. Utilizing decomposable, non‐innocent cations, such as [R3NH]+, it was possible to generate metal salts of the type M2[Si(CN)6] (M+=Li+, K+) via neutralization reactions with the corresponding metal hydroxides. The ionic liquid [BMIm]2[Si(CN)6] (m.p.=72 °C, BMIm=1‐butyl‐3‐methylimidazolium) was obtained by a salt metathesis reaction. All the synthesized salts could be isolated in good yields and were fully characterized.  相似文献   

12.
Several pseudohalide containing ionic liquids with quarternary ammonium counter cations of the general formula [R3MeN]X [R = ethyl ( 1X ), n‐butyl ( 2X ) with X = CN, N3, OCN, and SCN] were synthesized by decomposition of the corresponding trialkylammonium methylcarbonate in the reaction with Me3Si–X. We also treated 2CN with OP(OMe)3, yielding [nBu3MeN][O2P(OMe)2] and acetonitrile (Me‐CN). The double salt [nBu3MeN]2{[B(OMe)3(CN)](CN)} was obtained from the reaction of 2CN with B(OMe)3, featuring the formation of the monocyanotrimethoxyborate anion, [B(OMe)3(CN)], co‐crystallized with [nBu3MeN]CN. [nBu3MeN]2{[B(OMe)3(CN)](CN)} was fully characterized including structure elucidation.  相似文献   

13.
A set of seven [2,6‐bis(dimethylaminomethyl)phenyl]diphenyltin(IV) ({[(CH3)2NCH2]2(C6H3)}­(C6H5)2Sn+X?) ionic organotin(IV) compounds (X = Br, NO3, CN, SCN, SeCN, BF4 and PF6) has been prepared and characterized by electrospray ionization mass spectrometry, 1H NMR spectroscopy in CDCl3,119Sn NMR in CDCl3 and DMSO‐d6 solution, as well as by 13C and 119Sn CP/MAS NMR spectroscopy and X‐ray diffraction techniques in the solid state. The in vitro antifungal activity of these water‐soluble ionic organotin(IV) compounds was compared with starting compounds and the antifungal drugs currently in clinical use. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The systematic study of the reaction of M[PF6] salts and Me3SiCN led to a synthetic method for the synthesis and isolation of a series of salts containing the unprecedented [PF2(CN)4]? ion in good yields. The reaction temperature, pressure, and stoichiometry were optimized. The crystal structures of M[PF2(CN)4] (M=[nBu4N]+, Ag+, K+, Li+, H5O2+) were determined. X‐ray crystallography showed the exclusive formation of the cis isomer in accord with 31P and 19F solution NMR spectroscopy data. Starting with the K[PF2(CN)4] the room temperature ionic liquid EMIm[PF2(CN)4] was prepared exhibiting a rather low viscosity.  相似文献   

15.
Relativistic density functional calculations including scalar and spin-orbit effects via the ZORA approximation and including solvent effects were carried out on the [Re6S8(CN)6]4−, [Re5MoS8(CN)6]5−, [Re4Mo2S8(CN)6]5−, [Re3Mo3S8(CN)6]5−, [Re2Mo4S8(CN)6]5−, [ReMo5S8(CN)6]5− and [Mo6S8(CN)6]6− clusters. By increasing the replacement of each Re atom with Mo atoms we find that for x > 2 the HOMO–LUMO gap decreases significantly. The calculated gap of the [Re3Mo3S8(CN)6]5−, [Re2Mo4S8(CN)6]5− and [ReMo5S8(CN)6]5− clusters is similar to the calculated and observed gap of the superconducting PbMo6S8 Chevrel phases. The current calculations also indicates that the electronic similarities of the lowest excited states of the semiconducting 24e [Re5MoS8(CN)6]5− and 23e [Re4Mo2S8(CN)6]5− clusters with the strongly luminescent 24e [Re6S8(CN)6]4− cluster, suggest that these mixed metal clusters might be luminescent.  相似文献   

16.
M[B(CN)4]2: Two new Tetracyanoborate Compounds with divalent Cations (M = Zn, Cu) The reaction of ZnO or CuO with [H3O][B(CN)4] in aqueous solution yielded single crystals of Zn[B(CN)4]2 and Cu[B(CN)4]2, respectively. The compounds were characterized by single‐crystal X‐ray diffraction. Zn[B(CN)4]2 ( (no. 164), a = b = 7.5092(9) Å, c = 6.0159(6) Å, Z = 1) crystallizes isotypic with Hg[B(CN)4]2. The structure of Cu[B(CN)4]2 (C2/m (no. 12), a = 13.185(3) Å, b = 7.2919(9) Å, c = 6.029(1) Å, β = 93.02(2)°, Z = 2) can be considered as a super‐structure, resulting from Jahn‐Teller distortion of the Cu2+ ions. Magnetic measurements were performed for the copper compound. Vibrational spectra and thermal stabilities were compared with the known mercury(II) tetracyanoborate.  相似文献   

17.
The results of quantum chemical calculations of the electronic structure and geometry of octahedral clusters [Mo6S8(CN)6]6−, [Mo6Se8(CN)6]6−, [Re6S8(CN)6]4−, and Rh6(CO)16 by the ab initio SCF (RHF) and DFT (B3LYP) methods with various basis sets are presented. The electronic states of the clusters under study in ideal spherically symmetric potential were classified in the orbital quantum number l (1s, 1p, 1d, 1f, 1g, 1h, 1i), l = 0–6. In real crystal field with Oh symmetry these states are split. The calculated new electronic states were matched to the irreducible representations of the point symmetry group Oh. The polarizabilities of the compounds considered are 55–65 Å3. A new model for the electronic structure of octahedral clusters containing M6 groups was proposed. The model is based on the idea of free electrons moving in spherically symmetric potential field. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2617–2624, December, 2005.  相似文献   

18.
Abstract

The interaction of SeCN? with a new gold-based antiarthritic drug auranofin (Et3PAuSATg, where SATg? = 2, 3, 4, 6-tetra-O-acetyl-l-thio-β-D-glucopyranosato-S) in aqueous methanol has been studied by 13C and 31P NMR spectroscopy. It is observed that SeCN?releases bom ligands (i. e., SATg? and Et3P) to form [ATgS-Au-CN]? and [Et3P-Au-SeCN]. These newly generated species undergo further disproportionation and decomposition to generate species such as [(Et3P)2Au]+, [Au(CN)2]?, Et3PO and metallic selenium. The formation of [(Et3P)2Au]+ and [Au(CN)2]? is found to be much faster for Et3PAuNO3 than for Et3PAuSATg when reacted wim SeCN?. Exchange between unlabelled CN? of Au(CN)2 ? and labelled Se13CN? was observed without selenium being precipitated from Se13CN?.  相似文献   

19.
The reaction of [CpRu(CH3CN)3]PF6 with the bidentate ligands L-L=1,2-bis(diphenylphosphino)ethane, dppe, and (1-diphenylarsino-2-diphenylphosphino)ethane, dpadppe, affords mononuclear or dinuclear complexes of formula [CpRu(η2-L-L)(CH3CN)]PF6, [{CpRu(CH3CN)2}2(μ-η1:1-L-L)](PF6)2 and [{CpRu(CH3CN)}2(μ-η1:1-L-L)2](PF6)2 (L-L=dppe, dpadppe). All of the compounds are characterized by microanalysis and NMR [1H and 31P{1H}] spectroscopy. The crystal structure of [{CpRu(CH3CN)2}2(μ-η1:1-dppe)](PF6)2 has been determined by X-ray diffraction analysis. The complex exhibits a dppe ligand bridging two CpRu(CH3CN)2 fragments.  相似文献   

20.
The products obtained by mixing aqueous solutions of cobalt (II) chloride and potassium or hydrogen cyanide are nonstoichiometric compounds Co(CN)x, yH2O whith x between 2.2 and 2.4 and y between 1.75 and 2.15. They have a cubic face-centered unit cell with a = 10.20 ± 0.02 Å and Z between 6.8 and 7.1 (Z = number of units Co (CN)x yH2O per cell). Infrared spectra show that there is zeolitic as well as coordinated water present. The coordination units derived from reflectance spectra in the ultraviolet and visible region are (CoIII)C6 and CoIIN6-xOx. There exists a close structural relationship between Co(CN)x, yH2O and the stoichiometric compound Co3[Co(CN)6]2, zH2O. Comparison of calculated with experimental density shows that there must be holes in the threedimensional Co? C? N? Co-framework, which can be occupied by water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号