首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A survey of the use of 187Os satellite subspectra in 1H and 31P{1H} spectra of triosmium carbonyl clusters is reported. By varying evolution delays in HMQC spectra of [Os3(µ‐H)2(CO)10] we have selectively extracted the values for 1J(Os,H) and 2J(Os,H), respectively. An analysis of the principal modes of phosphine coordination in triosmium clusters demonstrates that 31P{1H}187Os satellite subspectra are diagnostic for equatorial coordination [1J(Os,P) = 211–223 Hz] or for axial coordination (perpendicular to the plane of the cluster) [1J(Os,P) ≈ 147 Hz]. Chelating and bridging diphosphines yield 187Os satellite subspectra which are the sum of A2X and AA′X spin systems. If significant P–P coupling is present, the AA′X component requires simulation. All observed 2J(Os,P) trans‐equatorial couplings fall in the range 38–65 Hz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
All J(P? H) and J(P? C) values, including signs, have been obtained in acetylenic and propynylic phosphorus derivatives, R2P(X)? C?C? H and R2P(X)? C?C? CH3 (X ? oxygen, lone pair and R ? C6H5, N(CH3)2, OC2H5, N(C6H5)2, Cl) from 1H and 13C NMR spectra. In PIV derivatives the following signs are obtained: 1J(P? C)+, 2J(P? C)+, 3J(P? C)+, 3J(P? H)+, 4J(P? H)? . Linear relations are observed between 1J(P? C), 2J(P? C) and 3J(P? C) versus 3J(P? H), indicating that these coupling constants are mainly dependent on the Fermi contact term, though the other terms of the Ramsey theory do not seem to be negligible for 1J(P? C) and 2J(P? C). In PIII derivatives these signs are: 1J(P? C)- and +, 2J(P? C)+, 3J(P? C)-, 3J(P? H)-, 4J(P? H)+. Only 3J(P? C) and 3J(P? H) reflect a small contribution of the Fermi contact term while in 1J(P? C) and 2J(P? C) this contribution seems to be negligible relative to the orbital and/or spin dipolar coupling mechanisms.  相似文献   

3.
The 1H and 31P NMR spectra of a series of compounds containing the PIII-N-PV skeleton including Cl2PNMeP(Z)Cl2 (Z?O or S), Cl2P·NMe·P(O)CINMe2, P4(NMe)6Zn (Z?S, n = 1?3; Z?Se, n = 1), XP(NBut)2P(Z)X (X?Cl, Z?O or S; X?OMe, Z?S or Se; X?NMe2, Z?S or Se; X?NEt2, Z?Se), (X?O or S), and Ph2PNRP(S)Ph2 (R?Me, Et) have been obtained. 1H-{31P} double resonance, and in selected cases, 31P-{1H, 77Se} and 31P-{1H, 31P} triple resonance experiments, indicate that 2J(PIII NPV) is positive in acyclic compounds, negative in most cyclic or cage compounds, and furthermore, is related to the conformation adopted by the PIII-N bond.  相似文献   

4.
The diastereomers of 16 1,3-oxa-, 1,3-aza- and 1,3- thiaphospholanes were assigned by means of the coupling constants 2J(P? C? H) and 3J(P? C? CH3) and the linewidths of the 31P signals and 1H chemical shifts of CH3 groups. It is shown that the change in the 31P chemical shifts allows the estimation of the relative configuration in these compounds.  相似文献   

5.
The NMR spectra of the trivalent fluorophospholanes ( 1, 2, 3 ) have been analysed at length. The absolute signs of the 3J(P? H) and 4J(F? H) coupling constants have been referred to the known negative sign of the 1J(P? F) coupling constant from selective heteronuclear double resonance experiments. The 3J(P? O? C? H) and 3J(P? N? C? H) coupling are positive. The weak values observed for 3J(P? S? C? H) have opposite signs, the larger being positive. All the 4J(F? P? X? C? H) coupling constants are positive showing a lack of stereospecificity.  相似文献   

6.
The signs of the phosphorus-proton coupling constants in various allenic organophosphorus compounds have been determined by either analysis of the AB2X spectra or double resonance. Probable absolute signs have been obtained by taking 3J(P? H) as positive. In allenic phosphine oxides, the following signs are obtained: 2J(P? H) +ve, 3J(P? H) +ve, 4J(P? H) ?ve, 5J(P? H) +ve and the 4J(P? H) coupling constant varies mostly with the inductive effect of the substituents bound to the phosphorus atom. In allenic phosphines, these sings are: 2J(P? H) +ve, 3J(P? H) +ve, 4J(P? H) ?ve and +ve and the 4J(P? H) coupling constant varies with both the inductive and resonance effects to the substituents. This coupling constant is negative except when the phosphorus atom is bound to groups which are electron-donating by resonance effects. These results are discussed in relation to the pπ? dπ bonding in phosphine.  相似文献   

7.
1J(13C?13C) nuclear spin–spin coupling constants in derivatives of acetylene have been measured from natural abundance 13C NMR spectra and in one case (triethylsilyllithiumacetylene) from the 13C NMR spectrum of a 13C-enriched sample. It has been found that the magnitude of J(C?C) depends on the electronegativity of the substituents at the triple bond. The equation 1J(13C?13C) = 43.38 Ex + 17.33 has been derived for one particular series of the compounds Alk3SiC?CX, where X denotes Li, R3Sn, R3Si, R3C, I, Br or Cl. The 1J(C?C) values found in this work cover a range from 56.8 Hz (in Et3SiC?Li) to 216.0 Hz (in PhC?CCI). However, the 1J(C?C) vs Ex equation combined with the Egli–von Philipsborn relationship allows the calculation of the coupling constants in Li2C2 (32 Hz) and in F2C2 (356 Hz). These are probably the lowest and the highest values, respectively, which can be attained for 1J(CC) across a triple bond. The unusually large changes of the 1J(C?C) values are explained in terms of substituent effects followed by a re-hybridization of the carbons involved in the triple bond. INDO FPT calculations performed for two series of acetylene derivatives, with substituents varied along the first row of the Periodic Table, corroborate the conclusions drawn from the experimental data.  相似文献   

8.
In Z? CH? CH?CH? Y compounds (Z or Y being an alkyl group) the ethylenic part of the spectra is often very complex and the 3J(H? C?C? H) coupling constant which is a good tool for determining the configuration, is not easily determined. We have studied such allylic derivatives and many configurations have been assigned through stereospecific synthesis. Except a very few cases, δ CH(Z) of the cis isomer is larger than δ CHZ of the trans isomer. In alcohols RCH?CH? CHOHR′ the stereoisomers behave differently in solutions with europium, praseodymium, holmium and dysprosium complexes. The spectra of the trans isomers remain strongly coupled but 3J(H? C?C? H) becomes easy to measure in the cis compounds.  相似文献   

9.
The easily obtained dimers of phosphole oxides, sulfides and methiodides give 13C NMR spectra where carbons within three (sometimes four) bonds of each 31P nucleus are doublets of doublets and thus constitute X in an AMX spectrum. Most of the spectra have been completely interpreted with the aid of spectral measurements at two magnetic fields. Saturation of the double bonds in dimers of methylphosphole–P(IV) derivatives causes the 31P nuclei to have very similar chemical shifts, with Δν not adequately different from 3J(PP) to give first-order coupling. When both 31P nuclei couple with a given 13C, a second-order (ABX) 31C NMR spectrum is obtained. The presence of the effect is revealed by running the 13C NMR spectra at high magnetic field; J(AX)+J(BX) is constant at all fields, but spacing between the lines of the multiplet varies. The spectrum of the oxide, with Δν/J=1.44 for the 31P spectrum at 36.43 MHz, approaches first order character at 75 MHz; the methiodide spectrum (Δν/J=4.55) is second order at 15 MHz but clearly first order at 50 MHz, and the sulfide (Δν/J=5.6) is nearly first order at 15 MHz. [2 + 2]-Photochemical intramolecular cyclization of the dimer oxides provides cage-like structures where the 31P nuclei are chemically equivalent, but magnetically non-equivalent, making the 13C signals have the characteristics of X in an AA′X coupling pattern.  相似文献   

10.
The 1H and 13C NMR spectra of 1,2-dibromoethane-13C2 have been analyzed to determine the magnitude (38·9 Hz) and sign (positive) of 1J(C? C) relative to those of 3J(H? H) (positive). This type of coupling appears to be rather insensitive to the presence of bromine or methyl as substituents on the carbons.  相似文献   

11.
The 31P decoupled PMR spectra of the title oxazaphospholanes give rise to well resolved ABXY patterns. Among the eight possible solutions, six can be readily eliminated from chemical shifts considerations and the choice between the remaining two is based on tickling experiments. Good fits are observed between experimental and calculated spectra. The relative signs of the 3J(P? O? C? H) and 3J(P? N? C? H) coupling constants are given by tickling and Indor experiments. The ring conformation is discussed.  相似文献   

12.
Coupling between P and (N)? H has been observed in the 1H{14N}NMR spectra of a series of phosphorus substituted thioformamides, R12/P(X)C(S)NHR2. For R2 = H one of the two couplings constants 3J(PCNH) is much larger than the other. The larger constant is assumed to be 3J(PCNH) (trans) and the magnitude of 3J(PCNH) for several compounds with R2 = Me or Ph is used to assign the configuration about the C(S)? N bond.  相似文献   

13.
13C chemical shifts and 31P? 13C spin–spin coupling constants are reported for 10 alkyl-, 20 benzyl- and 3 (naphthylmethyl)-phosphonates. While in saturated aliphatic chains P–C couplings over more than four bonds cannot be resolved, couplings over up to seven bonds are observed in the benzyl type systems. Conformational and substituent effects on J(PC) are studied and discussed. nJ(PF) (n = 4, 5, 6) are reported for the isomeric (fluorobenzyl)phosphonates and nJ(PP) (n = 5, 6, 7) were obtained from the 13C satellites in the 31P n.m.r. spectra of the isomeric diphosphonates, C6H4[CH2P(O)(OEt)2]2. Comparison of those 13C absorptions of the latter, which represent the X parts of ABX or AA′X spin systems, with the spectra of the corresponding (methylbenzyl)phosphonates, CH3C6H4CH2P(O)(OEt)2, yielded the relative signs of nJ(PC) (n = 2–6).  相似文献   

14.
19F and 31P decoupling experiments are used to simplify the proton spectra of para-substituted derivatives of triphenyl phosphine, prior to 1H-{1H} tickling experiments. 3J(31P…?H) and 4J(31P…?H) are positive, and 5J(31P…?19F) is negative in the trivalent phosphorus derivatives, and all become more positive as the valency of the phosphorus atom is increased. A triple resonance experiment is used to show that 7J(31P…?H) in [p-CH3C6H4CH2P(C6H5)3] is negative. The double resonance technique is used to relate the 31P chemical shifts to the tetramethylsilane resonant frequency.  相似文献   

15.
Several 1:1 adducts of gallium trihalides with triarylphosphines, X3Ga(PR3) (X=Cl, Br, and I; PR3=triarylphosphine ligand), were investigated by using solid‐state 69/71Ga and 31P NMR spectroscopy at different magnetic‐field strengths. The 69/71Ga nuclear quadrupolar coupling parameters, as well as the gallium and phosphorus magnetic shielding tensors, were determined. The magnitude of the 71Ga quadrupolar coupling constants (CQ(71Ga)) range from approximately 0.9 to 11.0 MHz . The spans of the gallium magnetic shielding tensors for these complexes, δ11?δ33, range from approximately 30 to 380 ppm; those determined for phosphorus range from 10 to 40 ppm. For any given phosphine ligand, the gallium nuclei are most shielded for X=I and least shielded for X=Cl, a trend previously observed for InIII–phosphine complexes. This experimental trend, attributed to spin‐orbit effects of the halogen ligands, is reproduced by DFT calculations. The signs of CQ(69/71Ga) for some of the adducts were determined from the analysis of the 31P NMR spectra acquired with magic angle spinning (MAS). The 1J(69/71Ga,31P) and ΔJ(69/71Ga, 31P) values, as well as their signs, were also determined; values of 1J(71Ga,31P) range from approximately 380 to 1590 Hz. Values of 1J(69/71Ga,31P) and ΔJ(69/71Ga,31P) calculated by using DFT have comparable magnitudes and generally reproduce experimental trends. Both the Fermi‐contact and spin‐dipolar Fermi‐contact mechanisms make important contributions to the 1J(69/71Ga,31P) tensors. The 31P NMR spectra of several adducts in solution, obtained as a function of temperature, are contrasted with those obtained in the solid state. Finally, to complement the analysis of NMR spectra for these adducts, single‐crystal X‐ray diffraction data for Br3Ga[P(p‐Anis)3] and I3Ga[P(p‐Anis)3] were obtained.  相似文献   

16.
The irreversible inhibition of δ‐chymotrypsin with the enantiomerically pure, P(3)‐axially and P(3)‐equatorially X‐substituted cis‐ and trans‐configurated 2,4‐dioxa‐3‐phospha(1,5,5‐2H3)bicyclo[4.4.0]decane 3‐oxides (X=F, 2,4‐dinitrophenoxy) was monitored by 31P‐NMR spectroscopy. 1H‐Correlated 31P{2H}‐NMR spectra enabled the direct observation of the vicinal coupling (3J) between the P‐atom of the inhibitor and the CH2O moiety of Ser195 (=‘Ser195’(CH2O)), thus establishing the covalent nature of the ‘Ser195’(CH2O? P) bond in the inhibited enzyme. The stereochemical course of the phosphorylation is dependent on the structure of the inhibitor, and neat inversion, both inversion and retention, as well as neat retention of the configuration at the P‐atom was found.  相似文献   

17.
Spin–spin carbon–carbon coupling constants across one, two and three bonds, J(CC), have been measured for a series of aryl‐substituted Z‐s‐Z‐s‐E enaminoketones and their thio analogues. As a result, a large set, altogether 178, of J(CC)s has been obtained. It consists of 82 couplings across one bond, 31 couplings across two bonds and 65 couplings across three bonds. Independently, the DFT calculations at the B3PW91/6‐311++G(d,p)//B3PW91/6‐311++G(d,p) level yielded a set of theoretical J(CC) values. A comparison of these two sets of data gave an excellent linear correlation with parameters a and b close to ideal; a = 0.9978 which is not far from unity and b = 0.22 Hz which is close to zero. The 1J(CC) couplings determined for the crucial fragment of the molecules, i.e. ? C?C? C?O (or ? C?C? C?S), are: 1J(C?C) ≈ 68 Hz (67 Hz) and 1J(C? C) = 60.5 Hz (60.0 Hz). The corresponding couplings found for the Z‐s‐Z‐s‐E isomer of the parent enaminoketone, 4‐methylamino‐but‐3‐en‐2‐one are 64.1 and 59.3 Hz, respectively. The most sensitive towards substitution of the oxygen atom by sulfur are two‐bond couplings between the α‐vinylic and aromatic Cipso carbon atoms, which attain 12 Hz in the enaminoketone derivatives and decrease to 5 Hz in their thio analogues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
2H‐Dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (HDOPO), 2‐(N,N‐diethylamino)‐dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (DEADOPO), and 2‐ethoxy‐dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (EtODOPO) are fully characterized in CDCl3 by 1H, 13C, 31P, and 15N NMR spectroscopy on 800‐ and 500‐MHz instruments. A strategy enabling their unambiguous signal assignment is presented, with special emphasis on 2D 1H,13C HMBC spectra. Additional line‐shape iterations of the aromatic 1H multiplets (ABCDX and ABCDEX spin systems) provided all long‐range nJH,H and nJP,H coupling constants with utmost precision. The experimental results augmented with those of the model compound phenylphosphonous acid clearly demonstrate that nJH,H couplings of the PH proton as well as the nJP,C values do not decrease in a monotonic manner with the number of intervening bonds from the phosphorus atom. This fact may potentially lead signal misassignments, if the analysis starts out from the coupling constants, as it occurred for HDOPO in the recent publication by Wagner et al. (Phosphorus, Sulfur and Silicon, 187, 2012, 781–798). The corrected assignment will be given in the present paper. Finally, the A2M3X or ABM3X type 1H spectral patterns of ethyl groups are also analyzed and explicit equations are derived to evaluate the strongly coupled ABM3X multiplets in EtODOPO.  相似文献   

19.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号