首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation reactions of 3,4,5-triamino-1,2,6-thiadiazine 1,1-dioxidc with hydrogen peroxide and chromium trioxide are reported. 3, 5-Diamino-4H-1,2,G-thiadiazin-4-one 1,1-dioxide is synthesized by different methods.  相似文献   

2.
The synthesis of two new acyclic nucleoside analogs, 2-(2′,3′-dihydroxypropyl)-5-amino-2H-1,2,4-thiadiazol-3-one (1) and 3-(2′,3′-dihydroxypropyl)-5-amino-3H-1,3,4-thiadiazol-2-one (2), is reported. The first compound, 1, was obtained by reaction of 3-chloro-1,2-propanediol with the sodium salt of 5-amino-2H-1,2,4-thiadiazol-3-one (3) in anhydrous dimethylformamide. Similarly, 5-amino-3H-1,3,4-thiadiazol-2-one (4) reacted with 3-chloro-1,2-propanediol to give 2. The thiadiazole 4 was prepared by condensation-cyclization of hydrazothiodicarbonamide (9).  相似文献   

3.
The synthesis of 3, 4-dihydro-1H-benzothiin-3-one and its selenium and tellurium analogs is reported from o-bromomethylphenylacetyl chloride and sodium hydrogen chalcogenates, via phase-transfer catalysis.  相似文献   

4.
Stabilization of the NH-nitrone grouping in oximino compounds is promoted by the inclusion of the conjugated system in the heterocycle. IR spectroscopy fails to distinguish between the oxime and nitrone forms of oximino compounds. The best evidence for the existence of the nitrone form is provided by x-ray diffraction examination of the monocrystals.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2312–2319, October, 1989.  相似文献   

5.
The synthesis of 1,4-thiazine 1-oxide and 1,1-dioxide analogs of the antibiotic emimycin is described. Reaction of methylthioglycolate with 1-bromo-2,2-diethoxyethane gave methyl (2,2-diethoxyethylthio)acetate ( 2 ). Treatment of 2 with methanolic ammonia followed by cyclization furnished 2H-1,4-thiazin-3(4H)-one ( 5 ). Oxidation of 5 with m-chloroperoxybenzoic acid converted it to 2H-1,4-thiazin-3(4H)-one 1-oxide ( 6 ). Oxidation of 2 with potassium permanganate, followed by treatment with methanolic ammonia, and cyclization gave 2H-1,4-thiazin-3(4H)-one 1,1-dioxide.  相似文献   

6.
7.
Treatment of sulfamide 4a and aryl-substituted sulfamides 4b-e with ethyl 3,3-diethoxypropionate ( 13 ) provided a convenient procedure for the synthesis of functionalized 5,6-dihydro-2H-1,2,6-thiadiazine 1,1-dioxides 14 . Key spectral properties of this novel class of heterocycles are reported. The generality and utility of this transformation is briefly explored.  相似文献   

8.
Synthesis of (R)-β, β-Caroten-2-ol and (2R, 2′R)-β, β-Carotene-2,2′-diol Starting from geraniol, the two carotenoids (R)-β, β-caroten-2-ol ( 1 ) and (2R, 2′R)-β, β-carotene-2,2′-diol ( 3 ) were synthesized. The optically active cyclic building block was obtained by an acid-catalysed cyclisation of the epoxide (R)- 4 . The enantiomeric excess of the product was > 95 %.  相似文献   

9.
The fragmentation pathways of some 4,5-dihydro-1,2,4-benzothiadiazepine-1,1-dioxide derivatives are discussed on the basis of metastable transition data, exact mass measurements and labelling experiments. These compounds show several primary fragmentation processes: M ? SO2, M ? OH and one involving an intramolecular oxygen migration (M ? CH3NO).  相似文献   

10.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

11.
2-Amino-6,7-dihydrothieno[3′,2′:5,6]pyrido[2,3-rf]pyrimidin-4-one ( 1 ) was prepared in three steps from S-(3-butynyl)thiosemicarbazide hydroiodide ( 3 ) and diethyl ketomalonate. The featured step in this synthetic sequence was an intramolecular Diels-Alder reaction of the in situ generated 3-(3-butynylthio)-6-carboethoxy-5-chloro-1,2,4-triazine ( 9 ) to provide the key intermediate 5-carboethoxy-6-chloro-2,3-dihydrothieno-[2,3-b]pyridine ( 6 ). In the course of studies directed toward the preparation of 1 , thermolysis of 3-(3-butynyl-thio)-6-carboethoxy-1,2,4-triazin-5(2H)-one ( 2 ) was found to involve competitive intramolecular Diels-Alder and intramolecular coplanar cycloamination processes, providing the 2,3-dihydrothieno[2,3-b]pyridin-6(7H)-one ( 4 ) and the 1,3-thiazino[3,2-b]-1,2,4-triazin-3-one (5) derivatives, respectively.  相似文献   

12.
13.
The inelastic neutron scattering (INS) spectra of β-5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO) are presented to 1400 cm−1. The β-NTO vibrational frequencies observed differ considerably from the -NTO vibrational frequencies and normal mode frequency calculations for the isolated molecule. The INS spectrum contains detail unobserved in the previous IR studies, including combinations and overtones of the phonon and internal modes of β-NTO. The INS spectra are compared with periodic DFT calculations to show that the periodic DFT results correctly predict the solid-state molecular vibrational frequencies.  相似文献   

14.
A new bridgehead nitrogen hetero‐ cycle viz. 11‐carboethoxy‐9‐oxo‐pyrimido[3′2′:3,4]‐1,2,4‐triazino[5,6‐b]indole 3 has been synthesized from 3‐azido‐5H‐1,2,4‐triazino[5,6‐b]indole 2 by its reaction with diethyl fumerate. The intermediate 2 was obtained by treating 3‐hydrazino‐5H‐1,2,4‐triazino[5,6‐b]indole with NaNO2 in presence of polyphosphoric acid. A plausible mechanism for the formation of 3 has been formulated and discussed. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:272–276, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20199  相似文献   

15.
α-MSH was labelled at its tyrosine2 residue with tritium and iodine. Several synthetic routes were investigated by preparing 13 precursor or mode compounds and 4 different labelled products (via about 40 intermediates). Their melanotropic activity was determined with an in vitro frog skin assay and, for some of the compounds, with a tyrosinase assay. The tritiation was performed on [Tyr(I2)2]α-MSH by catalytic halogen/tritium exchange, yielding α-MSH of high specific radioactivity (34 Ci/mmol) and full biological activity. Iodination was studied in detail using five different techniques. An equimolar chloramine T procedure proved to be the most convenient and reproducible method, resulting in monoiodinated α-MSH containing 99% of the label in position 2. The biological activity was 50% that of α-MSH; the specific radioactivity, determined in a competitive binding assay with a highly specific α-MSH antiserum and [Tyr(I)2]α-MSH as competitor, was 1530 Ci/mmol. The labelling techniques and the bioligical results are discussed.  相似文献   

16.
We report the synthesis of the 1,4-diol (4R,5R)-α,α,α′,α′-2,2-hexaphenyl-4,5-dimethanol-1,3-dioxolane from dimethyl-L-tartrate and benzophenone. The X-ray and the IR structural studies on show that this compound has a preferred conformation with OHPh interactions which are different from related compounds.  相似文献   

17.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

18.
Isozeaxanthin: Chirality and Enantioselective Synthesis of (4R,4′R)-Isozeaxanthin ((?)-(4R,4′R)-β, β-Carotin-4,4′-diol) The absolute configuration of optically active isozeaxanthin was established by synthesis using (?)-(R)-4-hydroxy-β-ionon ( 2 ) [18] as starting material.  相似文献   

19.
As an extension of previous studies on the total synthesis of (2R,4′R,8′R)-α-tocopherol ( 1 ) [1] [2], (S)-(?)-2-(6-benzyloxy-2,5,7,8-tetramethylchroman)acetic acid ( 6 ), a pivotal intermediate, possessing the absolute configuration required for construction of 1 was prepared by optical resolution of the racemic modification 11 . the latter substance was obtained by two routes, one emanating from the hydroxy acetal 7 [1] and the other based upon the Lewis acid mediated cycloaddition of trimethylhydroquinone to rac.-3-hydroxy-3-methylpent-4-en-l-yl acetate ( 16 ) giving rac. ethyl 2-(6-hydroxy-2,5,7,8-tetramethyl-chroman)acetate ( 12 ).  相似文献   

20.
In the reactions of the recently synthesized β-ketoesters 1-[(3′-methoxycarbonyl- and 1-[(3′-ethoxycarbonyl-4′-oxo)-1′-cyclohexyl]-3,4-dihydroisoquinoline 4, 5 with amidines or cyclic guanidines, a number of 2-substituted-6-(6′,7′-dimethoxy-3′,4′-dihydro-1′-isoquinolyl)-5,6,7,8-tetrahydroquinazolin-4(3H)-one derivatives 6–8 were prepared. The new compounds possess various pharmacological actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号