首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper gives a review of methods where Green's theorem may be employed in solving numerically the Navier–Stokes equations for incompressible fluid motion. They are based on the concept of using the theorem to transform local boundary conditions given on the boundary of a closed region in the solution domain into global, or integral, conditions taken over it. Two formulations of the Navier–Stokes equations are considered: that in terms of the streamfunction and vorticity for two-dimensional motion and that in terms of the primitive variables of the velocity components and the pressure. In the first formulation overspecification of conditions for the streamfunction is utilized to obtain conditions of integral type for the vorticity and in the second formulation integral conditions for the pressure are found. Some illustrations of the principle of the method are given in one space dimension, including some derived from two-dimensional flows using the series truncation method. In particular, an illustration is given of the calculation of surface vorticity for two-dimensional flow normal to a flat plate. An account is also given of the implementation of these methods for general two-dimensional flows in both of the mentioned formulations and a numerical illustration is given.  相似文献   

2.
The incompressible, two-dimensional Navier-Stokes equations are solved by the finite element method (FEM) using a novel stream function/vorticity formulation. The no-slip solid walls boundary condition is applied by taking advantage of the simple implementation of natural boundary conditions in the FEM, eliminating the need for an iterative evaluation of wall vorticity formulae. In addition, with the proper choice of elements, a stable scheme is constructed allowing convergence to be achieved for all Reynolds numbers, from creeping to inviscid flow, without the traditional need for upwinding and its associated false diffusion. Solutions are presented for a variety of geometries.  相似文献   

3.
The nonlinear interaction between the unidirectional bichromatic wave-train and exponentially sheared current in water of an infinite depth is investigated. The model is based on the vorticity transport equation and the exact free surface conditions, without any assumptions for the existence of small physical parameters. Earlier works of the wave–current interaction were mainly restricted to either current acted on the monochromatic wave or irregular waves limited to irrotational current. Different from these previous works, no constraint is made in our model for amplitudes of the primary wave, and the current owns an exponential type profile along the vertical line. To ensure that the effect of vorticity on the phase velocity is consistent with earlier derivation, the case of a small amplitude wave traveling on the exponentially sheared current is examined firstly. Then the effect of nonlinearity on the phase velocity of primary waves in a bichromatic wave-train is considered. Accurate high-order approximations of the phase velocity are obtained under consideration of both the nonlinear wave self–self and mutual interactions. Finally, the combined effect of vorticity and nonlinearity on the phase velocity is investigated through the case of a bichromatic wave-train propagating on an exponentially sheared current. It is found that the characteristic current slope determines the effect of vorticity on the phase velocity caused by nonlinear wave self–self and mutual interactions, and the surface current strength may amplify/reduce this effect.  相似文献   

4.
A numerical algorithm intended for the study of flows in a cylindrical container under laminar flow conditions is proposed. High resolution of the flow field, governed by the Navier–Stokes equations in velocity–vorticity formulation relative to a cylindrical frame of reference, is achieved through spatial discretisation by means of the spectral method. This method is based on a Fourier expansion in the azimuthal direction and an expansion in Chebyshev polynomials in the (nonperiodic) radial and axial directions. Several regularity constraints are used to take care of the coordinate singularity. These constraints are implemented, together with the boundary conditions at the top, bottom and mantle of the cylinder, via the tau method. The a priori unknown boundary values of the vorticity are evaluated by means of the influence-matrix technique. The compatibility between the mathematical and numerical formulation of the Navier–Stokes equations is established through a tau-correction procedure. The resolved flow field exhibits high-precision satisfaction of the incompressibility constraints for velocity and vorticity and the definition of the vorticity. The performance of the solver is illustrated by resolution of several configurations representative of generic three-dimensional laminar flows.  相似文献   

5.
The viscosity of water induces a vorticity near the free surface boundary. The resulting rotational component of the fluid velocity vector greatly complicates the water wave system. Several approaches to close this system have been proposed. Our analysis compares three common sets of model equations. The first set has a rotational kinematic boundary condition at the surface. In the second set, a gauge choice for the velocity vector is made that cancels the rotational contribution in the kinematic boundary condition, at the cost of rotational velocity in the bulk and a rotational pressure. The third set circumvents the problem by introducing two domains: the irrotational bulk and the vortical boundary layer. This comparison puts forward the link between rotational pressure on the surface and vorticity in the boundary layer, addresses the existence of nonlinear vorticity terms, and shows where approximations have been used in the models. Furthermore, we examine the conservation of mass for the three systems, and how this can be compared to the irrotational case.  相似文献   

6.
A new vortex particle‐in‐cell method for the simulation of three‐dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The physical mechanisms of roughness-induced transition (RIT) in pressure gradient boundary layers are studied using direct numerical simulations. Recent investigations have examined RIT processes in zero-pressure-gradient boundary layers (Suryanarayanan et al., 2019). The present study uses a vorticity dynamics point of view to examine how these processes are altered by a locally accelerating or decelerating flow that strains the vorticity field and creates a net vorticity flux at the wall. Flow acceleration is imposed on specific streamwise extents of the flow. This provides an understanding about how the fundamental mechanisms in different stages of RIT are affected by pressure gradients. The present results suggest that both lift-up and subsequent amplification of the unsteady perturbations are mitigated by flow acceleration. The effect on lift-up is explained by the compression (i.e. large negative value of the stretching term) of the wall-normal vorticity by negative dv/dy. Consistent with earlier experimental observations on spots and wedges, favorable pressure gradients reduce turbulent wedge spreading and nearly arrest the spreading when sufficiently strong. This result is also explained in terms of vorticity dynamics.  相似文献   

8.
The flow fields in the neighbourhood of double constrictions in a circular cylindrical tube were studied numerically. The effects on the streamline, velocity and vorticity distributions as the flow passes through the constrictions in the tube were studied in the Reynolds number range 5–200. Double constrictions with dimensionless spacing ratios of 1, 2, 3 and ∞ were studied for a 50% constriction. It is noted that when the Reynolds number is below 10, no recirculation region is formed in the above constricted flow. For Reynolds numbers greater than 10, a recirculation region forms downstream of each of the constrictions. For constriction spacing ratios of 1, 2, and 3, when the Reynolds number is high, a recirculation region spreads between the valley of the constrictions. The recirculation region formed between the two constrictions has a diminishing effect on the generation of wall vorticity near the second constriction area. In general, the peak value of wall vorticity is found slightly upstream of each of the constrictions. When the Reynolds number is increased, the peak wall vorticity value increases and its location is moved upstream. Maximum wall vorticity generated by the first constriction is found to be always greater than the maximum wall vorticity generated by the second constriction. The extent of this spreading of the recirculation region from the first constriction and its effects on the second constriction depend on the constriction spacing ratio and the flow Reynolds number.  相似文献   

9.
A new finite element method for solving the time-dependent incompressible Navier-Stokes equations with general boundary conditions is presented. The two second-order partial differential equations for the vorticity and the stream function are factorized, apart from the non-linear advection term, by eliminating the coupling due to the double specification on the stream function at (a part of) the boundary. This is achieved by reducing the no-slip boundary conditions to projection integral conditions for the vorticity field and by evaluating the relevant quantities involved according to an extension of the method of Glowinski and Pironneau for the biharmonic problem. Time integration schemes and iterative algorithms are introduced which require the solution only of banded linear systems of symmetric type. The proposed finite element formulation is compared with its finite difference equivalent by means of a few numerical examples. The results obtained using 4-noded bilinear elements provide an illustration of the superiority of the finite element based spatial discretization.  相似文献   

10.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

11.
Numerical simulations with a monotonicity preserving flow solver have been performed to study shock diffraction phenomena and shock wave generated vorticity. The computations were performed using the conservative Finite Element Method-Flux Corrected Transport (FEM-FCT) scheme, which has been shown to have an excellent predictive capability for various compressible flows with both strong and weak shocks. An adaptive unstructured methodology based on adapting to high density and entropy gradients was used in conjunction with a conservative shock-capturing scheme to adequately resolve strong and weak flowfield gradients. The chief interest was the formation of vorticity arising from shock wave propagation over a sharp corner and the high accuracy and resolution of the interacting compressible wave features. Numerical simulations were compared with previous experimental results and exhibited remarkably good agreement in terms of compressible wave propagation, as well as vorticity development and transport. The computations also allowed insight into the fundamental fluid dynamics, specifically shock diffraction, vortex convection and shock-vortex interactions.  相似文献   

12.
The multi-scale structures of turbulent wakes generated by three kinds of bluff body, i.e. circular cylinder, square cylinder and compound of cylinder and square (CS) cylinders, have been experimentally investigated in this paper. Firstly, the instantaneous velocity fields and vorticity were measured by the high-speed PIV technique in a circulating water channel. The instantaneous streamlines and corresponding normalized vorticity contours are obtained at a Reynolds number of 5600. Then one- and two-dimensional wavelet multi-resolution technique was used to analyze the instantaneous velocities and vorticity measured by the high-speed PIV. The turbulence structures were separated into a number of subsets based on their central frequencies, which are linked with the turbulence scales. The instantaneous vorticity and Reynolds shear stresses of various scales were examined and compared between the three generators. It is found that the large-scale turbulent structure makes the largest contribution to the vorticity and Reynolds shear stresses for the three wake generators and exhibits a strong dependence upon the initial conditions or the wake generators. The large-scale vorticity and the sizes of vortex in the circular and square cylinders are larger than those in the CS cylinder wake. The contributions to the Reynolds shear stresses from the large-scale turbulent structures account for 90-96% to the measured maximum Reynolds shear stresses for the three wakes. However, the small-scale structures make less contribution to the vorticity and Reynolds shear stresses.  相似文献   

13.
An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called “vorticity”. Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale simulation results. The coarse grid model which best preserves the fine-scale vorticity, i.e. has the minimum vorticity map preservation error is recognized as an OCGD. The performance of vorticity-based optimal coarse grid is evaluated for two highly heterogeneous 2D formations. It is also shown that two-phase flow parameters such as mobility ratio have only minor impact on the performance of the predicted OCGD.  相似文献   

14.
“Banded structures” of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as “gradient banding” or “vorticity banding,” respectively. The main features of gradient banding can be understood on the basis of a relatively simple constitutive equation. This minimal model for gradient banding will be discussed in some detail, and its predictions are shown to explain many of the experimentally observed features. The minimal model assumes a decrease of the shear stress of the homogeneously sheared system with increasing shear rate within a certain shear-rate interval. The possible microscopic origin of the severe shear-thinning behaviour that is necessary for the resulting nonmonotonic flow curves is discussed for a few particular systems. Deviations between experimental observations and predictions by the minimal model are due to obvious simplifications within the scope of the minimal model. The most serious simplifications are the neglect of concentration dependence of the shear stress (or on other degrees of freedom) and of the elastic contributions to the stress, normal stresses, and the possibility of shear-induced phase transitions. The consequences of coupling of stress and concentration will be analyzed in some detail. In contrast to predictions of the minimal model, when coupling to concentration is important, a flow instability can occur that does not require strong shear thinning. Gradient banding is sometimes also observed in glassy- and gel-like systems, as well as in shear-thickening systems. Possible mechanisms that could be at the origin of gradient-band formation in such systems are discussed. Gradient banding can also occur in strongly entangled polymeric systems. Banding in these systems is discussed on the basis of computer simulations. Vorticity banding is less well understood and less extensively investigated experimentally as compared to gradient banding. Possible scenarios that are at the origin of vorticity banding will be discussed. Among other systems, the observed vorticity-banding transition in rod-like colloids is discussed in some detail. It is argued, on the basis of experimental observations for these colloidal systems, that the vorticity-banding instability for such colloidal suspensions is probably related to an elastic instability, reminiscent of the Weissenberg effect in polymeric systems. This mechanism might explain vorticity banding in discontinuously shear-thickening systems and could be at work in other vorticity-banding systems as well. This overview does not include time-dependent phenomena like oscillations and chaotic behaviour.  相似文献   

15.
J. Ray  L. Jameson 《Shock Waves》2005,14(3):147-160
We study the interaction of a shock with a density-stratified gaseous interface (Richtmyer–Meshkov instability) with localized jagged and irregular perturbations, with the aim of developing an analytical model of the vorticity deposition on the interface immediately after the passage of the shock. The jagged perturbations, meant to simulate machining errors on the surface of a laser fusion target, are characterized using Haar wavelets. Numerical solutions of the Euler equations show that the vortex sheet deposited on the jagged interface rolls into multiple mushroom-shaped dipolar structures which begin to merge before the interface evolves into a bubble-spike structure. The peaks in the distribution of x-integrated vorticity (vorticity integrated in the direction of the shock motion) decay in time as their bases widen, corresponding to the growth and merger of the mushrooms. However, these peaks were not seen to move significantly along the interface at early times i.e. t < 10 τ, where τ is the interface traversal time of the shock. We tested our analytical model against inviscid simulations for two test cases – a Mach 1.5 shock interacting with an interface with a density ratio of 3 and a Mach 10 shock interacting with a density ratio of 10. We find that this model captures the early time (t/τ ∼ 1) vorticity deposition (as characterized by the first and second moments of vorticity distributions) to within 5% of the numerical results. PACS 47.40.Nm; 47.20.Ma  相似文献   

16.
The interaction of a given two-dimensional vorticity distribution with a circular cylinder is analyzed by comparing the numerical solutions provided by an inviscid and by a viscous approach. While the vorticity dynamics of high Reynolds flows in free space shows an almost inviscid behavior, at least in the starting phase, this is not the case in the presence of a solid wall where a considerable effect of viscosity is experienced since the initial stage of the evolution. In fact, the vorticity generation process at the wall may significantly influence the overall flow field even in the case of a weak interaction.A multilevel contour dynamics technique plus a vortex sheet at the body surface are introduced to study the inviscid evolution, while a viscous vortex method has been adopted for the solution of the complete Navier-Stokes equations. An energy-like relation involving forces and other global quantities of the flow is proposed together with its use as a way to control the accuracy of the numerical solution.The numerical simulation of a vorticity patch orbiting around a circular cylinder gives an interesting source of information for the study of unsteady separation providing, at the same time, a proper test to devise a simplified model within the limit of vanishing viscosity.
Sommario In questo lavoro si studia l'interazione di una distribuzione bidimensionale di vorticità con un cilindro circolare confrontando tra loro la soluzione numerica ottenuta dalle equazioni di Navier-Stokes con quella relativa ad un modello basato sull'ipotesi di fluido non viscoso. La dinamica di strutture vorticose nello spazio libero ad alti Reynolds ha un carattere prevalentemente non viscoso, per lo meno nella fase iniziale. Invece la presenza di una parete solida introduce nel campo nuova vorticità e di conseguenza rende importanti gli effetti viscosi già dai primi istanti dell'evoluzione anche nel caso di interazione debole.Per ottenere la soluzione in assenza di viscosità è stata utilizzata una metodologia di soluzione numerica basata sullaContour Dynamics insieme ad una discontinuità della velocità tangenziale sulla parete. La soluzione delle equazioni di Navier-Stokes è invece ottenuta con un modello viscoso a vortici. Si ricava una relazione di tipo energetico tra le forze agenti sul corpo ed altre grandezze globali del campo fluidodinamico che viene utilizzata per il controllo dell'accuratezza della soluzione numerica.La simulazione numerica del moto di una distribuzione di vorticità, inizialmente uniforme, in prossimità di un cilindro circolare, mentre permette di studiare più approfonditamente i fenomeni connessi alla separazione non stazionaria dello strato limite, offre, nel contempo, uno strumento appropriato per individuare un modello semplificato per viscosità tendente a zero.
  相似文献   

17.
Experimental evidence is reported, regarding the formation of a pair of co-rotating tip vortices by a split wing configuration, consisting of two half wings at equal and opposite angles of attack. Simultaneous measurements of the three-dimensional vector fields of velocity and vorticity were conducted on a cross plane at a downstream distance corresponding to 0.3 cord lengths (near wake), using an in-house constructed 12-sensor hot wire anemometry vorticity probe. The probe consists of three closely separated orthogonal 4-wire velocity sensor arrays, measuring simultaneously the three-dimensional velocity vector at three closely spaced locations on a cross plane of the flow filed. This configuration makes possible the estimation of spatial velocity derivatives by means of a forward difference scheme of first order accuracy. Velocity measurements obtained with an X-wire are also presented for comparison. In this near wake location, the flow field is dictated by the pressure distribution established by the flow around the wings, mobilizing large masses of air and leading to the roll up of fluid sheets. Fluid streams penetrating between the wings collide, creating on the cross plane flow a stagnation point and an “impermeable” line joining the two vortex centres. Along this line fluid is directed towards the two vortices, expanding their cores and increasing their separation distance. This feeding process generates a dipole of opposite sign streamwise mean vorticity within each vortex. The rotational flow within the vortices obligates an adverse streamwise pressure gradient leading to a significant streamwise velocity deficit characterizing the vortices. The turbulent flow field is the result of temporal changes in the intensity of the vortex formation and changes in the position of the cores (wandering).  相似文献   

18.
Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Reh  23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet.  相似文献   

19.
We present a theory of very long waves propagating on the surface of water. The waves evolve slowly, both on the scale ε (weak nonlinearity), and on the scale, σ, of the depth variation. In our model, dispersion does not affect the evolution of the wave even over the large distances that tsunamis may travel. We allow a distribution of vorticity, in addition to variable depth. Our solution is not valid for depth=O(ε4/5); the equations here are expressed in terms of the single parameter ε2/5σ and matched to the solution in deep water. For a slow depth variation of the background state (consistent with our model), we prove that a constant-vorticity solution exists, from deep water to shoreline, and that regions of isolated vorticity can also exist, for appropriate bottom profiles. We describe how the wave properties are modified by the presence of vorticity. Some graphical examples of our various solutions are presented.  相似文献   

20.
The design and operational characteristics of a 12-sensor hot wire probe for three-dimensional velocity–vorticity measurements in turbulent flow fields is described and discussed. The performance of the probe is investigated in comparison with X-sensor probe measurements in the near field of a rectangular turbulent jet with aspect ratio 6. Measurements have been conducted at Reynolds number Re D = 21,000 at nozzle distances of x/D = 1, 3, 6 and 11, where D is the width of the nozzle. The results obtained with the 12-sensor probe compare well to the results of the X-sensor probe. Distributions of mean and fluctuating velocity–vorticity fields are presented and discussed. Among the results the most prominent is the experimental confirmation of the high levels of fluctuating vorticity in the shear layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号