首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The free-radical bulk polymerization of 2,2-dinitro-1-butyl-acrylate (DNBA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as the initiator was investigated by DSC in the non-isothermal mode. Kissinger and Ozawa methods were applied to determine the activation energy (E a) and the reaction order of free-radical polymerization. The results showed that the temperature of exothermic polymerization peaks increased with increasing the heating rate. The reaction order of non-isothermal polymerization of DNBA in the presence of AIBN is approximately 1. The average activation energy (92.91±1.88 kJ mol −1) obtained was smaller slightly than the value of E a=96.82 kJ mol−1 found with the Barrett method.  相似文献   

2.
A new chelate (η5-C5H5)2Ti(SB)2, whereSB=O, N donor Schiff base salicylidene-4-methylaniline, was synthesized. The course of thermal degradation of the chelate was studied by thermogravimetric (TG) and differential thermal analysis (DTA) under dynamic conditions of temperature. The order of the thermal decomposition reaction and energy of activation was calculated from TG curve while from DTA curve the change in enthalpy was calculated. Evaluation of the kinetic parameters was performed by Coats-Redfern as well as Piloyan-Novikova methods which gaven=1, ΔH=1.114 kJ·mol?1, ΔE=27.01 kJ·mol?1, ΔS=?340.12 kJ·mol?1·K?1 andn=1, ΔH=1.114 kJ·mol?1, ΔE=20.01 kJ·mol?1, ΔS=?342.60 kJ·mol?1·K?1, respectively. The chelate was also characterized on the basis of different spectral studies viz. conductance, molecular weight, IR, UV-visible and1H NMR, which enabled to propose an octahedral structure to the chelate.  相似文献   

3.
Ab initio calculations using the unscaled 4-31G basis set have been carried out on the cc, tc, and tt conformers of carbonic acid and the bicarbonate ion, with full geometry optimization assuming the structures to be planar. The complete harmonic force field is reported for the (most stable) tt conformer and for the bicarbonate ion, also selected quadratic force constants for the cc and tc conformers. The changes in certain bond lengths and stretching force constants in the cctc, tctt, and cctt conformer conversion reactions are indicative of intramolecular hydrogen bonding, C?O…H? O and H? O…H? O, which is examined in greater detail by partitioning the overall conformer conversion energy into distortion and bonding energy components. The fundamental vibration frequencies for the tt conformer and the bicarbonate ion are calculated from the force constant matrices, and hence, using a scaling factor based on a comparison of calculated and experimental values for the bicarbonate ion and trans-formic acid, a value is predicted for the zero-point energy of the tt conformer. A new estimate of ΔH? for the hydration reaction, H2O + CO2 → H2CO3, at 298 K in the gas phase; is made from thermochemical data, +20.2 ± 3.4 kJ mol?1, which, together with estimates of (H298? – H0?) and the zero-point energy for H2CO3, gives +8.1 ± 7.0 kJ mol?1 for ΔET(expt). ΔET calculated from the 4-31G basis set data is -29.1 kJ mol?1. Comparison of the experimental value, the Hartree–Fock limit value, and values calculated with a variety of basis sets for the bond separation reaction, CO2 + CH4 → 2H2CO, suggests that the differences, ΔET(expt) minus ΔET(SCF ), are due mainly to basis set limitations and not substantial correlation energy contributions.  相似文献   

4.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

5.
Introduction N-Guanylurea dinitramide (GUDN) is a new ener-getic oxidizer with higher energy and lower sensitivity. Its crystal density is 1.755 g·cm-3. The detonation velocity is about 8210 m·s-1. Its specific impulse and pressure exponent are 213.1 s and 0.73, respectively. It has the potential for possible use as an energy ingredient of propellants and explosives from the point of view of the above-mentioned high performance. Its preparation,1 properties2 and hygroscopocity2 have been …  相似文献   

6.
The anionic polymerization of norbornene trisulfide initiated with sodium thiophenoxide (sodium cation solvated with dibenzo-18-crown-6 ether) was studied. Polymers with high molecular weights were obtained (M n up to 105, osmometrically). Molecular weights calculated for living polymerization conditions (i.e., one molecule of initiator yields one macromolecule) agree well with M n measured by osmometry. 1H-NMR, 13C-{1H}-NMR, and Raman spectra of the polymer are given. Thermodynamics of polymerization in toluene solvent is described. Enthalpy ΔHss = ?(1.39 ± 0.17) kcal mol?1 and entropy ΔSss = ?(7.52 ± 0.55) cal mol?1 deg?1 coefficients of polymerization were evaluated from the temperature dependence of the equilibrium monomer concentration determined dilatometrically.  相似文献   

7.
The rate constant of the primary decomposition step was determined for four symmetrical and four unsymmetrical azoalkanes. From the experimental activation energies and some literature enthalpy data, the following enthalpies of formation of radicals and group contributions were calculated: ΔH? (CH3N2) = 51.5 ± 1.8 kcal mol?1, ΔH? (C2H5N2) = 44.8 ± 2.5 kcal mol?1, ΔH? (2?C3H7N2) = 37.9 ± 2.2 kcal mol?1, [NA-(C)] = 27.6 ± 3.7 kcal mol?1, [NA-(?A) (C)] = 61.2 ± 3.1 kcal mol?1.  相似文献   

8.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

9.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

10.
At different temperatures, the interactions between imidacloprid (IMI) and bovine serum albumin (BSA) were investigated with a fluorescence quenching spectrum, a synchronous fluorescence spectrum, a three-dimensional fluorescence spectrum and an ultraviolet-visible spectrum. The average values of bonding constants (KLB: 3.424 × 10^4 L,mol^-1), thermodynamic parameters (△H: 5.188 kJ,mol^-1, △G^(○—):-26.36 kJ,mol^-1, △S: 103.9 J,K^-1,mol^-1) and the numbers of bonding sites (n: 1.156) could be obtained through Stern-Volmer, Lineweaver-Burk and ther- modynamic equations. It was shown that the fluorescence of BSA could be quenched for its reactions with IMI to form a certain kind of new compound. The quenching belonged to a static fluorescence quenching, with a non-radiation energy transfer happening within a single molecule. The thermodynamic parameters agree with △H〉 0, △S〉0 and△G^(○-)〈0, suggesting that the binding power between IMI and BSA should be mainly a hydrophobic interaction.  相似文献   

11.
The kinetics of decomposition of [Alg · Mn VIO42?] intermediate complex have been investigated spectrophotometrically at a constant ionic strength of 0.5 mol dm?3. The decomposition reaction was found to be first-order in the intermediate concentration. The results showed that the rate of reaction was base-catalyzed. The kinetic parameters have been evaluated and found to be ΔS? = ?103.88±6.18 J mol?1 K?1, ΔH? = 51.61 ± 1.02 kJ mol?1, and ΔG? = 82.57 ± 2.86 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The heat of formation of benzophenone oxide, Ph2CO2, was measured using photoacoustic calorimetry. The enthalpy of the reaction Ph2CN2 + O2 → Ph2CO2 + N2 was found to be ?48.0 ±0.8 kcal mol?1 and ΔHf(Ph2CN2) was determined by measuring the reaction enthalpy for Ph2CN2 + EtOH → Ph2CHOEt + N2 (?53.6 ±1.0 kcal mol?1). Taking ΔHf(PhCHOEt) = ?10.6 kcal mol?1 led to ΔHf(Ph2CN2) = 99.2 ± 1.5 kcal mol?1 and hence to ΔHf(Ph2CO2) = 51.1 ± 2.0 kcal mol?1. The results imply that the self-reaction of benzophenone oxide i.e., 2Ph2CO2 → 2Ph2CO + O2 is exothermic by ?76.0 ±4.0 kcal mol?1.  相似文献   

13.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

14.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

15.
The spontaneous self‐assembly of a neutral circular trinuclear TiIV‐based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n‐pentane into a solution with dichloromethane. The circular helicate has been characterized by using single‐crystal X‐ray diffraction study, 13C CP‐MAS NMR and 1H NMR DOSY solution spectroscopic, and positive electrospray ionization mass‐spectrometric analysis. These analytical data were compared with those obtained from a previously reported double‐stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double‐stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double‐stranded helicates was characterized by ΔH(toluene)=?30 kJ mol?1 and ΔS(toluene)=+357 J K?1 mol?1, whereas these values were ΔH(CH2Cl2)=?75 kJ mol?1 and ΔS(CH2Cl2)=?37 J K?1 mol?1 for the ring helicate. The transformation of the ring helicate into the double‐stranded helicate was a strongly endothermic process characterized by ΔH(CH2Cl2)=+127 kJ mol?1 and ΔH(n‐pentane)=+644 kJ mol?1 associated with a large positive entropy change ΔS=+1115 J K?1?mol?1. Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n‐pentane. Suggestions for increasing the stability of the ring helicate are given.  相似文献   

16.
Kinetics of polymerization of acrylamide initiated by Thallium(III) perchlorate was investigated in aqueous perchloric acid medium in the temperature range of 55–70°C. The rates of polymerization were measured varying the concentration of the monomer, initiator, and perchloric acid. The rate of polymerization was found to increase with increase of temperature, monomer concentration, initiator concentration, and perchloric acid concentration. The effect of additives like different solvents, surfactants, and retarders on the rate of polymerization was studied. Molecular weights of the polymer were determined by viscometry. The chain transfer constants for the monomer (CM) and that for the solvent dioxan (Cs) were calculated to be 7.33 × 10?3 and 6.66 × 10?3, respectively. From the Arrhenius plot, the overall activation energy (Ea) was calculated to be 10.68 kcal/mol. The energy of initiation was calculated to be 12.36 kcal/mol. Depending on the results obtained, a suitable reaction mechanism has been suggested and a rate equation has been derived.  相似文献   

17.
Bis(diethanolamine) manganate(III) was prepared. The polymerization of acrylamide and methacrylamide initiated by this complex in aqueous solution at pH 0.9 was studied at 45°. The rate of polymerization was followed by bromometry, the rate of complex disappearance spectrophotometrically and the molecular weights of the polymers were determined viscometrically. The rate of polymerization was found to be proportional to [Monomer]1.0. The order with respect to initiator was found to be 0.5 for acrylamide and 0.3 for methacrylamide. The apparent overall activation energies for the polymerizations are ?87 kJ mol?1 and ?59 kJ mol?1 for acrylamide and methacrylamide respectively. A kinetic reaction scheme is proposed on the basis of the experimental data; kinetic parameters have been evaluated.  相似文献   

18.
The E and Z geometric isomers of a stable silene (tBu2MeSi)(tBuMe2Si)Si=CH(1‐Ad) ( 1 ) were synthesized and characterized spectroscopically. The thermal Z to E isomerization of 1 was studied both experimentally and computationally using DFT methods. The measured activation parameters for the 1Z ? 1E isomerization are: Ea=24.4 kcal mol?1, ΔH=23.7 kcal mol?1, ΔS=?13.2 e.u. Based on comparison of the experimental and DFT calculated (at BP86‐D3BJ/def2‐TZVP(‐f)//BP86‐D3BJ/def2‐TZVP(‐f)) activation parameters, the Z?E isomerization of 1 proceeds through an unusual (unprecedented for alkenes) migration–rotation–migration mechanism (via a silylene intermediate), rather than through the classic rotation mechanism common for alkenes.  相似文献   

19.
The reversible dimerisation of o-phenylenedioxydimethylsilane (2,2-dimethyl-1,3,2-benzodioxasilole) has been studied by 1H NMR spectroscopy. The kinetics of this reaction can be described quantitatively by a bimolecular 10-ring formulation reaction and a monomolecular backreaction. The thermodynamic and kinetic parameters are: ΔH0 = ?43 kJ mol?1; ΔS0 = ?112 J mol?1 K?1; ΔG0298 = ?9.6 kJ mol?1; ΔH3298 = 57 kJ mol?1; ΔS3298 = ?129 J mol?1 K?1; ΔG3298 = 96 kJ mol?1; Ea = 60 kJ mol?1; A = 3.17 × 106 l mol?1 s?1. Remarkable is the low activation energy of formation of the ten-membered ring, considering that two SiO bonds have to be cleaved during the reaction. Transition states and possible structures of the ten-membered heterocycle are discussed.  相似文献   

20.
The kinetics of the interaction of L ‐asparagine with [Pt(ethylenediamine)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(ethylenediamine)(H2O)22+], [L ‐asparagine], and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species and L ‐asparagine as the zwitterion. The substitution reaction shows two consecutive steps: the first step is the ligand‐assisted anation and the second one is the chelation step. Activation parameters for both the steps have been calculated using Eyring equation. The low ΔH1 (43.59 ± 0.96 kJ mol?1) and large negative values of ΔS1 (?116.98 ± 2.9 J K?1 mol?1) as well as ΔH2 (33.78 ± 0.51 kJ mol?1) and ΔS2 (?221.43 ± 1.57 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 252–259, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号