首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal decomposition of the diazonium sulfate derived from N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-aminobenzamide afforded products formulated as 1-phenyl-3-methyl[2]benzopyrano[4,3-c]pyrazol-5-one (yield 10%), 1,4-dimethyl-3-phenylpyrazolo[3,4-c]isoquinolin-5-one (yield 10%), N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-hydroxybenzamide (yield 8%) and 4′-hydroxy-2,3′-dimethyl-1′-phenylspiro[isoindoline-1,5′-[2]-pyrazolin]-3-one (yield 20%). Decomposition of the diazonium sulfate derived from N-methyl-(1,3-diphenylpyrazol-5-yl)-2-aminobenzamide gave products formulated as 7,9-dimethyldibenzo[e,g]pyrazolo[1,5-a][1,3]-diazocin-10-(9H)one (yield 8%), 4-methyl-1,3-diphenylpyrazolo[3,4-c]isoquinolin-5-one (yield 7%) and 4′-hydroxy-2-methyl-1′,3′-diphenylspiro[isoindoline-1,5′-[2]pyrazolin]3-one (yield 10%). The spiro compounds 6a,b underwent thermal and acid-catalysed conversion into the hitherto unknown 2-benzopyrano[4,3-c]pyrazole ring system 7a,b in good yield. Analytical and spectral data are presented which supported the structures proposed.  相似文献   

2.
8,10-Dimethyl-3-(unsubstituted, methyl, ethyl, n-butyl, phenyl)-4-hydroxypyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidin-2(1H)-ones and 3-(2-hydroxyethyl)-2,8,10-trimethylpyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidin-4-ol were synthesized by cyclocondensation of 3-amine-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridine with ethyl malonates and α-acetyl-γ-butyrlolactone. Dichloro- and diazido- derivatives were obtained from the reaction of pyridopyrazlopyrimidine derivatives with POCl3 followed by NaN3. The tetrahetrocyclic systems were formed by cyclization of 4-chloro-3-(2-chloroethyl)-2,8,10-trimethylpyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimidine with the appropriate primary amines. The structures of all compounds were established by NMR and mass spectra.  相似文献   

3.
The synthesis of a novel rotenone-like molecule, 9-methoxy-8-methyl-6,6a,12,12a-tetrahydro[1]benzopyrano-[3,4-b][1]benzopyran-12-one ( 2 ) is described. Efficient syntheses of 3,4-dihydro-2H-[1]benzopyran-3-one ( 9 ) from ethyl 3-hydroxy-2H-[1]benzopyran-4-carboxylate ( 6 ), an intermediate in the synthesis of 2 , were developed. Thermolysis of 6 and 9 in decalin yielded 6,8-dihydro-14H-bis[1]benzopyrano[3,4-b:4′,3′-e]pyran-14-one ( 8 ), which has previously been described. Also produced in the thermolysis was the isomeric 1H-bis[1]-benzopyrano[3,4-b:3′,4′-á]pyran-7-(9H)one ( 10 ), the first member of a novel, pentacyclic ring system.  相似文献   

4.
A series of 7,12-dihydropyrimido[1′2′:1,2]pyrido[3,4-b]mdole-4(6H)-ones was prepared by Fischer indolization of 9-arylhydrazono-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrirmdin-4-ones. Quantum chemical calculations (ab initio and AM1) indicate that position 3 of 7,12-dihydropyrimido[1′,2′:1,2]pyrido-[3,4-b]indole-4(6H)-one can be involved in electrophilic substitutions, while position 2 is sensitive towards nucleophilic attack. Bromination of 6-methyl-7,12-tetrahydropyrimido[1′,2′:1,2]pyrido-[3,4-b]indol-4(6H)-one 16 with bromine afforded 3-bromo derivative 25 , which was reacted with cyclic amines to give 2-ammo-7,12-dihydropyrirmdo[1′2′:1,2]pyrido[3,4-b]indol-4(6H)-ones 26–30 in an addition-elimination reaction. Vielsmeier-Haack formylation of compound 16 gave 12-formyl 31 and 3,12-diformyl 32 derivatives (an N-formyl-1-deaza derivative of nauclefidine alkaloid 34 ) at 60° and 100°, respectively. 3,12-Diformyl compound 32 was oxidized to 3-carboxyl derivative 33 with potassium permanganate. The quaternary salt 35 , obtained from compound 16 with dimethyl sulfate, suffered a ring opening on the action of aqueous sodium hydroxide. The new compounds have been characterized by elemental analyses uv, 1H nmr and in some cases by 13C ruler, CD spectra and X-ray investigations.  相似文献   

5.
The reaction of 3-(2-oxocycloalkylidene)indol-2-one 1 with thiourea and urea derivatives has been investigated. Reaction of 1 with thiourea and urea in ethanolic potassium hydroxide media leads to the formation of spiro-2-indolinones 2a-f in 40–50% yield and a novel tetracyclic ring system 4,5-cycloalkyl-1,3-diazepino-[4,5-b]indole-2-thione/one 3a-f in 30–35% yield. 3-(2-Oxocyclopentylidene)indol-2-one afforded 5′,6′-cyclopenta-2′-thioxo/ oxospiro[3H-indole-3,4′(3′H)pyrimidin]-2(1H)-ones 2a,b and 3-(2-oxocyclohexylidene)indol-2-one gave 2′,4′a,5′,6′,7′,8′- hexahydro-2′-thioxo/oxospiro[3H-indole-3,4′ (3′H)-quinazolin]-2(1H)-ones 2c-f . Under exactly similar conditions, reaction of 1 with fluorinated phenylthiourea/cyclohexylthiourea/phenylurea gave exclusively spiro products 2g-1 in 60–75% yield. The products have been characterized by elemental analyses, ir pmr. 19F nmr and mass spectral studies.  相似文献   

6.
3-(4′-Pyridyl)-4-amino-5-mercapto-1,2,4-triazole(1)reacted with aroyl isothiocyanates2a-1 to yield twelve novel 3-(4′-pyridyl)-6-aroylamino-S-triazolo[3,4-b]-1,3,4-thiadiazoles,4a-1.Triethylamine was necessary for the condensation of 1 with phenyl isothiocyanate(3)to give 3-(4′-pyridyl)-6-phenylamino-S-triazolo[3,4-b]-1,3,4-thiadiazole(6).The structures were confirmed bythe elemental and spectral analyses.Their antibacterial activity against B.Subtilis,E.Coli,E.aerogenes and S.aureus was observed preliminary.  相似文献   

7.
Rearrangements of (2′-Propinyl)cyclohexadienols and -semibenzenes The acid-catalyzed dienol-benzene rearrangement of 3- and 5-methyl-substituted (2′-propinyl)cyclohexadienols has been investigated. Treatment of the dienols with CF3COOH in CCl4 yields allenyl- and (2′-propinyl)benzenes via [3,4]- and [1,2]-sigmatropic rearrangements, respectively. The reaction with H2SO4 in Et2O leeds to a mixture of allenyl-, 2′-propinyl-, 3′-butinyl- and (2′,3′-butadienyl)benzenes (Scheme 3). The latter are products of a thermal semibenzene-benzene rearrangement (cf. Scheme 9). The corresponding semibenzenes have been prepared by dehydration of the cyclohexadienols with H2SO4 or POCl3 (Schemes 6 and 7). Under acidic conditions, the p-(2′-propinyl)semibenzenes 33–35 (Scheme 8) undergo [3,4]- and [1,2]-sigmatropic rearrangements to give again allenyl- and (2′-propinyl)benzenes, whereas the thermal rearrangements to the 3′-butinyl- and (2′,3′-butadienyl)benzenes (Scheme 9) involves a radical mechanism. In contrast, the o-(2′-propinyl)semibenzene b (Scheme 7) leads to (2′,3′-butadienyl)benzene 32 via a thermal [3,3]-sigmatropic rearrangement.  相似文献   

8.
The reactions of the pyrazole-5-diazonium salt 3 with malononitrile and ethyl cyanoacetate gave 4-amino-3-cyano-8-ethoxycarbonylpyrazolo[5,1-c][1,2,4]triazine 7 and 4-amino-3,8-bisethoxycarbonylpyrazolo[5,1-c]-[1,2,4]triazine 8 , whose reactions with p-chloroaniline hydrochloride afforded 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)amidinopyrazolo[5,1-c][1,2,4]triazine 9 and 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)car-bamoylpyrazolo[5,1-c][1,2,4]triazine 10 , respectively. The reactions of 7 and 8 with o-phenylenediamine di-hydrochloride provided 9-ethoxycarbonyl-13H-spiro[benzimidazole-2′(3′H),6(5H)-pyrazolo[1,5′:3,4][1,2,4]tri-azino[5,6-b][1,5]benzodiazepine] hydrochloride 11a and 9-ethoxycarbonyl-6-oxo-13H-5,6-dihydropyrazolo-[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzodiazepine 12 , respectively. The antifungal activity of the above compounds was described.  相似文献   

9.
An elegant one-step synthesis of two novel spiro ring systems viz: spiro[3H-indole-3,4′-(2′-amino-3′-carbonitrile-[4′H]-pyrano[3,2-c]benzopyran)]-2,5′(1H)-dione8 and spiro[(2-amino-3-carbonitrile-indeno[1,2-b]pyran)-4(5H)>3′-[3H]indole]-2′,5(1′H)-diones in 80–85% yields is described. The spiro heterocycles were prepared by the reactions of fluorine containing 3-dicyanomethylene-2H-indol-2-ones with 4-hydroxy-2H-1-benzopyran-2-one and 1H-indene-1,3(2H)-dione respectively. The synthesized compounds have been characterized on the basis of elemental analyses, ir, pmr, 19F nmr and mass spectral data.  相似文献   

10.
Ready, convenient synthesis for 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-1,2,3,-4-tetrahydropyrido-[3′,2′:,4,5]thieno[3,2-d]pyrimidines 5 , 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-3,4-dihydropyrido[3′,2-: 4,5]thieno[3,2-d]pyrimidines 6 , 4-chloro-8-cyano-7-ethoxy-9-phenyl-2-substitutedpyrido[3′,2′:4,5]thieno[3,2-4 -pyrimidines 7 and 8-cyano-7-ethoxy-2-(2′-nitrophenyl)-9-phenyl-4-substitutedpyrido[3′,2′:4,5]thieno[3,2- d ]pyrimidines 8-18 from 2-chloro-3,5-dicyano-6-ethoxy-4-phenylpyridine 1 via 3,5-dicyano-6-ethoxy-2-mercapto-4-phenylpyridine 2 and aminocarboxamide 4 are reported. In addition, the reaction of hydrazino derivative 12 with reagents such as formic acid and triethyl orthoformate yielded the fused tetraheterocyclic 8-cyano-9- ethoxy-5-(2′-nitrophenyl)- 7-phenylpyrido[3′,2′:4,5]thieno[2,3-e]-1, 2,4-triazolo[4,3-c]pyrimidine system 19 .  相似文献   

11.
From an analysis of nmr spectral data, 1,6,7,12b-tetrahydro-2H,4H-[1,3 ]oxazino[3′, 4′ :1,2]-pyrido[ 3,4-b ]indole is shown to exist in solution at room temperature almost entirely in the cis-fused ring conformation with the nitrogen lone pair bisecting the C4 methylene group whereas under the same conditions 1,2,3,6,7,12b-hexahydro-3-methyl-4H-pyrimido[3′,4′:1,2] pyrido-[3,4-b ]indole exists as an approximately 50:50 equilibrium mixture of the cis and trans-fused ring conformations.  相似文献   

12.
The o-diamine, 3,4-diamino-1,2,5-thiadiazole ( 2 ), was synthesized from 3,4-dichloro-1,2,5-thiadiazole ( 3 ) hy three methods. Aqueous glyoxal cyclized 2 into [1,2,5]thiadiazolo[3,4–6]-pyrazine ( 14 ). 3,4-Dichloro-1,2,5-thiadiazole 1,1-dioxide ( 18 ) reaeted with 2 to give 1,3-dihydro-bis[1,2,5]thiadiazolo[3,4-b:3′,4′-e]pyrazine 2,2-dioxide ( 19 ). The reaction of 2 with selenium oxyehloride led to [1,2,5]selenadiazolo[3,4-c] [1,2,5]thiadiazole ( 12 ). Ring closure of 2,3-diaminoquinoxaline ( 4 ) with thionyl chloride or selenium oxychloride gave [1,2,5]thiadiazolo-[3,4-b]quinoxaline ( 21 ) and [1,2,5]selenadiazolo[3,4-b]quinoxaline ( 22 ), respectively. Sulfurous acid reduced 21 to the 4,9-dihydro derivative 23 , which was reoxidized to 21 with chloranil. Aqueous hase hydrolyzed 21 to 4 via the hydrated intermediate 24 . Aqueous glyoxal cyclized 4 to the covalent hydrate of pyrazino[2,3-b]quinoxaline ( 26 ), 27 , which was dehydrated to 26 . Compound 26 underwent rapid addition of two alcohols in a process analogous to covalent hydration.  相似文献   

13.
Several 3,3′-(1,6-hexanediyl)bis[6-methyl-2,4(1H,3H)-pyrimidinedione] derivatives ( 4a, 4b , and 4c ) were synthesized from 1,6-(hexanediyl)bis[6-methyl-2H-1,3-oxazine-2,4(3H)-dione] (3) . Compound 4c was converted to 6, which reacted with thiourea giving thiuronium salt 7 . 3,3′-(1,6-Hexanediyl)bis [1-(2-mercaptoethyl)-6-methyl-2,4(1H,3H)-pyrimidinedione] (9) was obtained by the hydrolysis of 7 , and then 9 was oxidized to 12,22-dimethyl-3,4-dithia[6.6] (1.3)-1,2,3,4-tetrahydro-2,4-dioxopyrimidinophane (10) .  相似文献   

14.
Derivatives of two new molecular structures, namely, 7,8-dihydro-6H,10H-[1,2,5]thiadiazolo[3′,4′:4,5]pyrimido[2,1-b][1,3]thiazin-10-one and 6,7-dihydro-9H-thiazolo[3,2-a][1,2,5]thiadiazolo[3,4-d][pyrimidin-9-one, and derivatives of N-substituted sulfamic acid, namely, (8-amino-3,4-dihydro-2H,6H-pyrimido[2,1-b][1,3]thiazin-6-on-7-yl)sulfamic acid and (7-amino-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-5-on-6-yl)sulfamic acid, were separated out as by-products in the reduction reaction of 8-amino-3,4-dihydro-7-nitroso-2H,6H-pyrimido[2,1- b][1,3]thiazin-6-one and 7-amino-2,3-dihydro-6-nitroso-5H-thiazolo[3,2-a]pyrimidin-5-one derivatives, respectively, with sodium hydrosulfite. A mechanism of reaction, which hypothesizes the action of sodium hydrosulfite in an asymmetic form, is proposed. The results of single-crystal X-ray investigation on 7,8-dihydro-6H,10H-[1,2,5]thiadiazolo[3′,4′:4,5]pyrimido[2,1-b][1,3]thiazin-10-one (R = 0.032 for 863 reflections) and (8-amino-3,4-dihydro-2H,6H-pyrimido[2,1-b]- [1,3]thiazin-6-on-7-yl)sulfamic acid, sodium salt (R = 0.028 for 3507 reflections) are reported.  相似文献   

15.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

16.
1,4-Naphthoquinone ( 1 ) was transformed with alkyl 2-aminofumarates 2 into 2H-naphtho[1,2-b]pyran-2-ones 3 and 4 , which served as intermediates in the synthesis of 7, 8 and 13 , which are derivatives of two new heterocyclic systems: naphtho[2′,1′:5,6]pyrano[3,4-d][1,3]oxazine and naphtho[1′,2′:5,6]pyrano[3,4-d]pyrimidine.  相似文献   

17.
The reactions of the 3-substituted 4-amino-8-ethoxycarbonyl[5,1-c][1,2,4]triazines 1 and 2 with o-amino-phenol hydrochloride gave the pyrazolo[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzoxazepines 5 and 8 . The alkylation of 5 with methyl iodide and isopropyl iodide afforded the 6-alkoxylpyrazolo[1′,5′:3,4][1,2,4]triazino-[5,6-b][1,5]benzoxazepines 6a and 6b , respectively. Refluxing of 5, 6a, 6b and 8 in hydrochloric acid/acetic acid resulted in ring transformation to produce the spiro[benzoxazole-2′(3′H),4(1H)pyrazolo[5,1-c][1,2,4]-triazines] 7a, 7b and 9 . The screening data of the above compounds was described.  相似文献   

18.
The syntheses of the K-oxide and K-imine derivatives of dibenz[a,j]anthracene ( 1 ) are described. The parent hydrocarbon 1 that was obtained as a side product in the Elbs pyrolysis of (2-methyl-1-naphthyl)-1′-naphthylmethanone ( 10 ) was oxidized to 3-(2-formylphenyl)-3-phenanthrenecarboxaldehyde ( 3 ). Treatment of the dialdehyde with tris(dimethylamino)phosphine gave 4b,5a-dihydrodibenz[3,4:5,6]anthra[1,2-b]oxirene ( 4 ). Reaction of the oxirane with sodium azide followed by triethyl phosphite cyclization of the mixture of trans azido-alcohols so formed, yielded mainly 4b,5a-dihydrodibenz[3,4:5,6]anthra[1,2-b]azirine ( 5 ).  相似文献   

19.
In the Pictet-Spengler reaction of indole-3-propanamine 1 and diethyl-(2-formyl-cyclopropane-1,1-dicar-boxylate) 2 the formation of ethyl (1a,2,4,5,6,11,11b,11c-octahydro-2-oxo-1H-cycloprop[3′,4′]pyrrolo[1,2′:1,2]-azepino[3,4-b]indole-1a-carboxylates) 3 and 4 was observed. Compounds 3 and 4 represent a new ring system.  相似文献   

20.
Benz[h]imidazo[1,2-c]quinazolinium-l-olate (5) and benzo[h]pyrrolo[1′,2′:3,4]imidazo[1,2-c]quinazolinium-8-olate (9) having novel meso-ionic ring systems were synthesized by the reaction of N-(5,6-dihydrobenzo[h]-quinazolin-4-yl)amino acids with acetic anhydride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号