首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differently pretreated glass capillaries were coated with hydroxy-terminated methyl or methyl-phenyl polysiloxane gum phases and cured at 340–360°C for several hours. The volatile reaction products formed during the baking procedure were analyzed and the retention behavior of various polar test compounds were investigated both before and after the heat treatment. The findings were used to establish a reaction scheme which explains crosslinking and surface bonding of hydroxy-terminated silicone phases in high-temperature-silylated glass capillaries. The principle has been extended to the immobilization of common endcapped silicone phases by mixing them with hydroxy-terminated phases.  相似文献   

2.
In this study, the surface chemistry and structure of methyl-substituted silica gels and porous oxycarbide glasses were investigated. FTIR was used to measure the relative concentration of Si−CH3 and Si−OH as a function of the degree of methyl-substitution and the pyrolysis temperature. The gels and glasses were further heated, dehydrated or hydrated, in situ, within the FTIR spectrometer. In the temperature range of 800–850°C, high surface area oxycarbide glasses were created with no detectable surface hydroxyl groups. Oxycarbide glasses synthesized in argon at 700°C displayed a weak band for surface hydroxyl groups and reversible physisorption of water, while those synthesized at 850/900°C showed a complete absence of surface hydroxyl groups and the formation of vicinal silanols upon chemisorption of water. Isolated silanols were observed upon heat treatment in vacuum. Formation of aromatic carbon species was found to correlate with the decomposition of the methyl groups. The oxycarbide surface is quite stable to densification (presumably due to elemental carbon on the pore surfaces). In the absence of oxygen, porous silicon oxycarbide glass powders maintain surface areas >200 m2/g at 1200°C. However, oxidizing species in the atmosphere deplete the aromatic carbon species, and the glasses lose surface area.  相似文献   

3.
The impact of surface and oxygen on the oxidative pyrolysis of ethane at temperatures above 590°C was studied using a wall-less reactor. At very low conversions under homogeneous conditions, ethene formation begins at the same temperature regardless of whether oxygen is present or absent. Between 0.00 and 0.13% conversion (592–632°C), the rate with oxygen is actually less than the rate in the absence of oxygen. A reversal occurs at about 633°C above which oxygen has a promoting effect. It is concluded that under homogeneous conditions the initiation step in the oxygen-promoted pyrolysis is the same as in the oxygen-free pyrolysis; therefore, initiation by direct attack of oxygen on ethane does not make an important contribution. The decrease in rate observed upon addition of oxygen implies the formation of the relatively unreactive HO2 · radical. As conversion of the HO2 · radical to the more reactive HO · radical becomes significant, the reaction is highly accelerated. If a stainless steel surface is added, the reaction is inhibited at higher conversions in the presence of oxygen. Again at low conversions, a second reversal occurs, and the stainless steel surface acts as a promoter below 649°C. The rate of surfacecatalyzed ethene formation at 590°C equals the rate of homogeneous ethene formation at 630°C.  相似文献   

4.
The crosslinking reaction in a two component methyl silicone rubber has been studied by thermomechanical analysis (TMA) and differential scanning calorimetry (DSC). The rubber was formed from two methyl silicone prepolymers; one containing reactive hydrogens every 50 to 100 groups and the other polymer containing pendant vinyl groups at the same frequency. In the presence of a platinum catalyst above 60°C crosslinking proceeds without a loss or gain in weight. The heat of reaction, energy of activation (calculated by two methods) crosslink density and elastic modulus (Young's) were studied as a function of prepolymer concentration, dilution and swelling. A preliminary value for the heat of reaction per mole of SiH and SiCHCH2 has been calculated. From crosslink density measurements both by hexane swelling and TMA and DSC heats of reaction a qualitative picture has been obtained of the role of entangled chains in producing effective crosslinks.  相似文献   

5.
Three-dimensional light-emitting diodes (LEDs) are the preferred light source for bulb lamps due to their 360° illumination. Addition curing silicone resins have usually been used to encapsulate LEDs. LED-filament encapsulation needs silicone resins having high thermal performance and thixotropy. Herein, a low refractive index and highly anti-thermal aging silicone oil was synthesized by hydrolysis and co-condensation method, and used to prepare an encapsulation material for high-power LED-filament. The cured silicone materials were characterized by thermogravimetric analysis (TGA) and thermal aging test under 180°C and 250°C. The results demonstrated that the thermal stability of the cured silicone resins with short-chain phenyl silicone as a crosslinker was higher than that with long-chain methyl silicone oil crosslinker. Owing to the excellent thermal stability, appropriate hardness, high transparency and photoelectric efficiency, this LED encapsulation material is a promising candidate for high-power LED package.  相似文献   

6.
Conveniently available transition metal hexamethyldisilazanes (M-HMDS) are described as novel surface reacting agents in ?Si? O? M type surface compound formation on silicagel. Secondary reaction products ?Si? O? SiMe3 and ?Si? N(SiMe3)2 confer “silanized” (hydrophobic) environments which can be removed at 300–400°C. Reactivity of M? N linkages with surface silanols and strained siloxanes can be manipulated by coordinating ligands L (also as solvents) in the molecule. Three legged vanadium(III) surface compounds were obtained directly by thermal activation of V[N(SiMe3)2]3 on SiO2 in neutral or reducing atmospheres. Detailed course of the reaction were monitored by ESCA and Reflectance Spectroscopy. Impregnation from benzene (0.40–0.45 wt. % V) and subsequent heating to 400–800°C (for 1 hr) gave optimized products. The optimized (?Si? O)3V from V(HMDS)3 was found to have identical spectral, chemical, and catalytical properties as the oxidation/reduction products from NH4VO3 etc. from aq. impregnations including chemiluminescence with O2 at 20°C. This is the first reported example of such remarkable surface product correspondence by different mechanistic pathways and its utility in structural elucidation is emphasized. Importance of chemiluminescence as most sensitive indicator of identical surface states is discussed as well as attempts to produce “naked” two legged VII/SiO2 and VIII/SiO2.  相似文献   

7.
In photochemical vapor deposition of aluminum film on silicon using dimethylaluminum hydride, (CH3)2AlH, a surface reaction dominated below a (CH3)2AlH pressure of 0.3 m Torr at 200°C, which was induced only with the 160 nm band emitted from a deuterium lamp. A gas-phase reaction occurred above 0.3 mTorr at 200°C, which could be induced by both 160 nm and 240 nm emission bands from the lamp. To distinguish between surface ad gas-phase reactions, a thickness profile was used. At 240°C the surface reaction could be induced even by the 240 nm band, while the deposits formed under illumination of the two bands were thinner than those obtained with only the 240 nm band, indicating occurrence of vacuum ultraviolet (VUV)-enhanced desorption. The mechanism responsible for the observed wavelength dependence in unclear. The electrical resistivity of the films deposited at 200°C was 4.5 μΩ cm, which did not change with wavelength.  相似文献   

8.
This work presents the use of sulfated tin oxide enhanced with SiO2 (SO42−/SnO2-SiO2) as a superacid solid catalyst to produce methyl esters from Jatropha curcas oil. The study was conducted using the design of experiment (DoE), specifically a response surface methodology based on a threevariable central composite design (CCD) with α = 2. The reaction parameters in the parametric study were: reaction temperature (60°C to 180°C), reaction period (1 h to 3 h), and methanol to oil mole ratio (1: 6 to 1: 24). Production of the esters was conducted using an autoclave nitrogen pressurized reactor equipped with a thermocouple and a magnetic stirrer. The maximum methyl esters yield of 97 mass % was obtained at the reaction conditions: temperature of 180°C, reaction period of 2 h, and methanol to oil mole ratio of 1: 15. The catalyst amount and agitation speed were fixed to 3 mass % and 350–360 min−1, respectively. Properties of the methyl esters obtained fell within the recommended biodiesel standards such as ASTM D6751 (ASTM, 2003).  相似文献   

9.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

10.
不同厚度三倍频SiO2增透膜的设计、制备与改性   总被引:1,自引:0,他引:1  
本文通过光学计算设计了具有不同厚度的三倍频增透膜。以氨水为催化剂、正硅酸乙酯(TEOS)为前驱体,通过溶胶-凝胶(Sol-Gel)技术制得SiO2溶胶;采用浸渍提拉法镀膜得到符合设计要求的三倍频增透膜。研究结果表明,增透膜的耐磨擦性能随着膜层厚度的增大而增大,本文制得的厚度达到200 nm以上的三倍频增透膜耐磨擦性能显著优于传统的1/4波长三倍频增透膜。此外,本文以甲基含氢硅油为膜表面修饰剂,提出一种全新的超快的表面疏水性改性的方法。经该方法处理后,增透膜由亲水膜转变为疏水膜,对水的接触角从23.4°增大至95°,增透膜的耐环境性显著提高。  相似文献   

11.
Bis(1,5‐cyclooctadiene) nickel [Ni(COD)2] was employed as a nickel precursor to prepare nickel oxide nanoparticles upon high‐surface‐area mesoporous silica. Under protection of argon, Ni(COD)2 was dissolved in tetrahydrofuran (THF) to react with surface silanols of mesoporous silica SBA‐15, which formed a black powder after completion of the surface reaction. Calcination of the powder produced ultrafine NiO inside the mesoporous silica matrix, which was evidenced by X‐ray diffraction, N2 adsorption–desorption, transmission electron microscopy and thermogravimetric analysis. The thermogravimetric analysis suggests that NiO formation is a result of surface nickel species calcination, whereas structural characterization clearly show that NiO nanoparticles of <5 nm are evenly distributed inside the silica SBA‐15 matrix and mesoporosity is well preserved upon calcinations and NiO formation. The surface reaction between Ni(COD)2 and surface silanols was found for the first time, and the method used here may be extended conveniently to prepare other metal oxide nanoparticles upon high‐surface‐area supports as well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The polymerization of L - and DL -alanine NCA initiated with n-butylamine was carried out in acetonitrile which is a nonsolvent for polypeptide. The initiation reaction was completed within 60 min.; there was about 10% of conversion of monomer. The number-average degree of polymerization of the polymer obtained increased with the reaction period, and it was found to agree with value of W/I, where W is the weight of the monomer consumed by the polymerization and I is the weight of the initiator used. The initiation reaction of the polymerization was concluded as an attack of n-butylamine on the C5 carbonyl carbon of NCA. The initiation, was followed by a propagation reaction, in which there was attack by an amino endgroup of the polymer on the C5 carbonyl carbon of NCA. The rate of polymerization was observed by measuring the CO2 evolved, and the activation energy was estimated as follows: 6.66 kcal./mole above 30°C. and 1.83 kcal./mole below 30°C. for L -alanine NCA; 15.43 kcal./mole above 30°C., 2.77 kcal./mole below 30°C. for DL -alanine NCA. The activation entropy was about ?43 cal./mole-°K. above 30°C. and ?59 cal./mole-°K. below 30°C. for L -alanine NCA; it was about ?14 cal./mole-°K. above 30°C. and ?56 cal./mole-°K. below 30°C. for DL -alanine NCA. From the polymerization parameters, x-ray diffraction diagrams, infrared spectra, and solubility in water of the polymer, the poly-DL -alanine obtained here at a low temperature was assumed to have a block copolymer structure rather than being a random copolymer of D - and L -alanine.  相似文献   

13.
Flaxseed oil is rich in the alpha-linolenic acid. The effect of heating on the thermal properties of flaxseed oil extracted from flax seeds has been investigated. The flaxseed oils were heated at a certain temperature (75, 105, and 135 °C, respectively) for 48 h. The melting curve (from ?75 to 100 °C) of flaxseed oil was determined by differential scanning calorimetry (DSC) at intervals of 4 h. Three DSC parameters of exothermic event and endothermic event, namely, peak temperature (T peak), enthalpy, and temperature range were determined. The initial flaxseed oil exhibited an exothermic peak, two endothermic peaks, and two endothermic shoulders between ?68 and ?5 °C in the melting profile. Heating temperature had a significant influence on the oxidative deterioration of flaxseed oil. The melting curve and parameters of flaxseed oil were almost not changed when flaxseed oil was heated at 75 °C. However, the endothermic peaks of melting curve decreased dramatically with the increasing of heating time when heating temperature was above 105 °C. There is almost no change of melting heat flow of flaxseed oil when heating time exceeded 32 h at 135 °C. The preliminary results suggest that the DSC melting profile can be used as a fast and direct way to assess the deterioration degree of flaxseed oil.  相似文献   

14.
Structure and Catalytic Properties of Molybdenum Oxide Supported Catalysts in Some Oxidation Reactions Molybdenum supported catalysts were prepared by using different precursor compounds such as Mo(π-C3H5)4, [Mo(OC2H5)5]2, MoCl5, (NH4)6Mo7O24, and their catalytic behaviour in some oxidation reactions was studied. During the preparation process, as a result of interaction between the molybdenum compound used and the support, different surface compounds with strongly differing catalytic properties have been formed. MoO3 and supported catalysts with MoO3 crystallites on the surface, catalyse the H2 oxidation at temperatures above 400°C and the CO oxidation at temperatures of about 500°C. The reaction proceeds according to a redox mechanism. On surface compounds of molybdenum which exist on the surface if organic complexes are used as precursors, the catalytic H2 oxidation occurs even at 100°C with a high reaction rate. The catalytic CO oxidation on these catalysts occurs at temperatures of about 300°C. An associative mechanism on coordinative unsaturated MoVI sites is discussed.  相似文献   

15.
With the cheap and abundant resource of alkali lignin as feedstock, surfactants for enhanced oil recovery were synthesized by amination and alkylation reaction of lignosulfonate. The effects of amination conditions, including the ratio of raw materials, amination reagent, temperature, and reaction time, on nitrogen contents and surface tension of the surfactants were investigated. The results showed that ethylenediamine was more suitable for amination, and the molar ratio of alkali lignin, ethylenediamine, and formaldehyde was 1:2:1.5 at 80°C for 5 hours. The structure of synthesized products was characterized by Fourier transform infrared spectrometry. The HLB value of synthesized product was 10. The interfacial tension between Daqing crude oil and synthetic water could be decreased to 10?2 mN/m with synthesized surfactant and NaOH at 45°C. Moreover, the effects of molecular weight of surfactants on interfacial tension were also studied. The synthesized surfactant (Mw > 10,000) showed a better interfacial activity on Daqing crude oil.  相似文献   

16.
An exopolysaccharide-producing Antarctic yeast strain was selected and identified as Cryptococcus laurentii AL100. The physiological properties of the strain and its ability to utilize and biotransform different carbon sources (pentoses, hexoses, and oligosaccharides) into exopolysaccharide and biomass were investigated. Sucrose was chosen as a suitable and accessible carbon source. The biosynthetic capacity of the strain was studied in its dynamics at different sucrose concentrations (20, 30, 40, and 50 g/L) and temperatures (22 and 24 °C). The maximum biopolymer quantity of 6.4 g/L was obtained at 40 g/L of sucrose, 22 °C temperature and 96-h fermentation duration. The newly synthesized microbial carbohydrate was a heteropolysaccharide having the following monosaccharide composition: arabinose, 61.1%; mannose, 15.0%; glucose, 12.0%; galactose, 5.9%; and rhamnose, 2.8%. It was characterized by polydispersity of the polymer molecule, 60% of it having molecular mass of 4200 Da. The exopolysaccharide demonstrated good emulsifying and stabilizing properties with regard to oil/water emulsions and a pronounced synergistic effect with other hydrocolloids such as xanthan gum, guar gum, and alginate.  相似文献   

17.
The decrease of the droplet radii of silicone oil dispersed in a polystyrene matrix at a temperature of 140°C with increasing time was measured by NMR dynamic imaging. From this time dependence the diffusion coefficient of the silicone oil into the matrix was calculated to be 7 · 10−18 m2 · s−1. The uptake of the silicone oil in the polystyrene matrix was confirmed by broad line NMR measurements.  相似文献   

18.
The reaction of Ba(NO3)2 with TiO2(anatase) was studied by TG and DTA. According to simultaneous TG and DTA, the reaction occurred sharply around the melting temperature of Ba(NO3)2, ~577°C, at low heating rates, and the reaction followed after melting of Ba(NO3)2 as the rate was raised. For the isothermal reactions the conversion α vs time relationship was given by the equation: kt = 1 - (1-α)1/3. The relationship was shown by one straight line below 577°C, and by two lines with a bend above 577°C. The reaction rates at the earlier period above 577°C were about 15 smaller than those at the later period, which were nearly on the extrapolated log k vs 1/T line obtained below 577°C. The activation energy was 212 kJ mol?1 for the solid-solid reaction and 231 kJ mol?1 for the earlier period in the liquid-solid reaction.  相似文献   

19.
The permeability of isotactic poly(phenyl silsesquioxane) (PPSQ) to O2 and N2 at 25.0°C and to CO2 and CH4 at 35.0°C was measured at low pressures by the “time-lag” method. PPSQ is a glassy silicone polymer with an 8-atom ring structure of alternating Si and O atoms. The CO2/CH4 selectivity of PPSQ is markedly higher than that of other silicone polymers, whereas its O2/N2 selectivity appears to be only slightly higher. PPSQ is not as effective a “molecular sieve” as would be expected from its ring structure, possibly because its relatively large mean interchain distance suggests that this polymer has a large mean free volume.  相似文献   

20.
The 1H-nuclear magnetic resonance spectrum showed that the l-rhamnosyl residues of native gellan gum were coinvolved in both a small number of 4C1-pyranose conformations and a large number of 1C4-pyranose conformations, whereas for deacylated polymer, almost of the residues were involved in 4C1-pyranose conformation. The flow curves of native gellan gum showed plastic behavior above 0.2%. The elastic modulus stayed at a constant value with increase in temperature up to 40 °C, then decreased rapidly. The elastic modulus increased with addition of CaCl2 (6.8 mM) and stayed constant value with increase in temperature up to 65 °C, then decreased rapidly. The stronger elastic modulus was observed in deacylated gellan gum with addition of CaCl2. The elastic modulus of native gellan gum showed larger value than that in aqueous solution in the presence of urea (4.0 M). Intra- and intermolecular associations of native gellan gum molecules in the presence of Ca+2 were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号