首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of diluent on molecular motions and glass transition in the polystyrene–toluene system was studied by means of dielectric, thermal, and NMR measurements. Three dielectric relaxations were observed between 80 and 400°K. On the basis of NMR measurements on solutions in toluene and in deuterated toluene, relaxation processes were assigned to segmental motions of polystyrene, rotations of toluene, and the local motions of polystyrene and toluene in order of appearance from the high-temperature side. The concentration dependence of the relaxation strength and of the activation energy for the primary relaxation (that at the highest temperature) show a step increment at about 50% by weight. The activation plots for the primary process were expressed by the Vogel–Tamman equation. With this equation, the temperatures at which the mean dielectric relaxation time becomes 100 sec is determined. This agrees well with the glass-transition temperature Tg and hence Tg in concentrated solution is expressed by in terms of the parameters A, B, and T0 of the Vogel–Tamman equation. The values of A and B are, respectively, about 12 and 0.65 and independent of the concentration. The physical meaning of these parameters is discussed.  相似文献   

2.
The sub-Tg relaxations of bisphenol-A–based thermosets cured with diaminodiphenyl methane and diaminodiphenyl sulfone have been studied by dielectric measurements over the frequency range 12 Hz to 200 kHz from their ungelled or “least” cured states to their fully cured states. Both thermosets show two relaxation processes, γ and β, as the temperature is increased toward their Tgs. In the ungelled states, the γ process is more prominent than the β process. As curing proceeds, the strength of the γ process decreases and reaches a limiting value, while that of the β process initially increases, reaches a maximum value, and then decreases. An increase in the chain iength and the number of crosslinks increases the number of -OH dipoles and/or degree of their motions in local regions of the network matrix. This is partly caused by the decreasing efficiency of segmental packing as the curing proceeds. The sub-Tg relaxations become increasingly more, separated from the α relaxation during curing. Physical aging causes a decrease in the strength of the β relaxation of the thermosets as a result of the collapse of loosely packed regions of low cross-linking density, and this decrease competes against an increase caused by further crosslinking during the “post-cure” process.  相似文献   

3.
Dielectric measurements, differential thermal analyses (DTA), and broad-line proton magnetic resonance (NMR) measurements are reported on the system poly(vinyl acetate)–toluene. Four dielectric relaxations were observed between 80 and 400°K. From proton NMR measurements on solutions in toluene and in deuterated toluene, the relaxation processes can be assigned, respectively, to segmental motion of poly(vinyl acetate), α; motion of side group, β′ rotation of toluene, β; local motions of poly(vinyl acetate) and toluene, γ, in order of appearance with decreasing temperature. Two stepwise changes in DTA traces have been observed and can be assigned as glass transition points TgI and TgII. Comparison of these glass transition points with temperatures at which dielectric relaxation times for the α and β processes are 100 sec, indicate that segmental motion of poly(vinyl acetate) and rotation of toluene are frozen-in at TgI and TgII, respectively. Activation plots for the α process conform to the Vogel–Tamman equation. In terms of the parameters A, B, and T0 of the equation, TgI can be represented by an expression of the form TgIT0 + B/(A + 3). In the range of concentration above 50% by weight, A and B are almost independent of concentration but T0 varies strongly. The nature of the secondary dispersions is also discussed.  相似文献   

4.
Glass transition temperatures were determined for a homologous series of unsubstituted lactone monomers varying in ring size from four to sixteen atoms. Examination of these transitions as a function of ring size shows a maximum in Tg for the seven-atom ε-caproalctone ring. This behavior is interpreted on the basis of a conformational change in lactones which occurs in rings containing seven to nine atoms. The Tg values of polylactones derived from these cyclic esters were determined and correlated with Tg values of the monomers. Except for the anomolous ε-caprolactone and the strained fourmembered lactone, an apparently constant difference between monomer and polymer Tg is observed. Treatment of the polylactones as methylene copolymers permits extrapolations of the Tg values to obtain that of polyethylene. Two values suggesting the γ and β transitions of polyethylene are obtained.  相似文献   

5.
A series of poly(itaconic acid ester)s with pendant cycloalkyl rings, ranging in size from cyclopropyl to cyclododecyl, have been prepared. Two distinct groups have been synthesized; Group I derivatives have the ring attached directly to the main chain through an oxycarbonyl group and Group II polymers have a methylene unit inserted between the ring and the oxycarbonyl group. The glass transition temperatures, Tg, have been measured for polymers in each group. In Group I, Tg increased with ring size up to the dicyclohexyl derivative, but it then decreased with further increase in ring size. The decrease in Tg is due to the inherent flexibility of the ring which leads to internal plasticization of the sample. This effect appears to predominate over ring size in determining the magnitude of Tg, for 7–12 membered rings. Similar trends have been found in the Group II polymers, but the effect of the ring becomes less important the further it is moved away from the chain backbone.  相似文献   

6.
This study used refractometry, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and dielectric analysis to assess the viscoelastic properties and phase behavior of blends containing 0–20% (w/w) 12‐tert‐butyl ester dendrimer in poly(methyl methacrylate) (PMMA). Dendritic blends were miscible up through 12%, exhibiting an intermediate glass‐transition temperature (Tg; α) between those of the two pure components. Interactions of PMMA C?O groups and dendrimer N? H groups contributed to miscibility. Tg decreased with increasing dendrimer content before phase separation. The dendrimer exhibited phase separation at 15%, as revealed by Rayleigh scattering in ultraviolet–visible spectra and the emergence of a second Tg in dielectric studies. Before phase separation, clear, secondary β relaxations for PMMA were observed at low frequencies via dielectric analysis. Apparent activation energies were obtained through Arrhenius characterization. A merged αβ process for PMMA occurred at higher frequencies and temperatures in the blends. Dielectric data for the phase‐separated dendrimer relaxation (αD) in the 20% blend conformed to Williams–Landel–Ferry behavior, which allowed the calculation of the apparent activation energy. The αD relaxation data, analyzed both before and after treatment with the electric modulus, compared well with neat dendrimer data, which confirmed that this relaxation was due to an isolated dendrimer phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1381–1393, 2001  相似文献   

7.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

8.
The complex dielectric constant was measured under elevated pressure for the α relaxation of vulcanized chlorinated polyethylene. Both temperature and pressure effects on the static dielectric constants, the activation enthalpy, and volume, and the pressure dependence of the glass-transition temperature were obtained. The dependence of shift factors on temperature was expressed by the Vogel–Fulcher–Tamman–Hesse (VFTH) equation: ?log aT = A ? B/(T ? T0). The parameters A, B, and T0 for each pressure applied were calculated by minimizing the standard deviation between log aT and experiments. The values of the parameters in the Williams–Landel–Ferry (WLF) equation: ?log aT = C1(T ? Tg)/[C2 + (T ? Tg)], were also estimated from the resulting values of the VFTH parameters. All these parameters depended on pressure. The activation volume plotted against T ? Tg decreased with increasing pressure.  相似文献   

9.
Molecular relaxations in 47-wt % polypropylene oxide of molecular weight 4000 in toluene as diluent have been studied by dielectric permittivity and loss measurements from 77 to 320 K, in the frequency range 1 Hz to 2 × 105 Hz. One relaxation process (β process) is observed in the glassy state below Tg (= 148 K), and two processes are observed in the supercooled liquid at T > Tg. Relative to the amplitude of the fast relaxation process (i.e., the local segmental motions of the polymer chain), the amplitude of the slow process is increased and that of the β process decreased on dilution of the pure polymer. The β process has an Arrhenius energy of 17 kJ mol?1. The rates of the two relaxations at T > Tg follow the Vogel–Fulcher–Tamman equation and seem to merge on cooling the liquid towards Tg. The relative temperatures at which the three relaxation processes occur at the rate of 1 kHz remain largely unaffected on dilution. The increase in static permittivity of the solution on cooling is more than anticipated from the temperature effects alone. It is suggested that the increase is due to the enhanced short-range orientational correlation of the dipoles, which may involve H bonding.  相似文献   

10.
The dielectric permittivity and loss of Bisphenol-A-polycarbonate (PC) was measured over the frequency range 100 Hz to 200 kHz and temperature range 77–383 K. One sub-Tg relaxation peak is observed which rapidly broadens with a decrease in temperature. This is attributed to a progressive separation of the γ and β peaks, which at high temperatures are merged to form one peak of high strength. The strength of the sub-Tg relaxations decreases on physical aging of PC but is increased if the sample is quenched from a temperature above its Tg. Slowly cooled PC has a lower strength of its sub-Tg relaxation than a quenched specimen. The thermal history of PC affects the magnitude of its sub-Tg relaxation.  相似文献   

11.
With advances in nanoscience and nanotechnology, there is increasing interest in polymer nanocomposites, both in scientific research and for engineering applications. Because of the small size of nanoparticles, the polymer–filler interface property becomes a dominant factor in determining the macroscopic material properties of the nanocomposites. The glass‐transition behaviors of several epoxy nanocomposites have been investigated with modulated differential scanning calorimetry. The effect of the filler size, filler loading, and dispersion conditions of the nanofillers on the glass‐transition temperature (Tg) have been studied. In comparison with their counterparts with micrometer‐sized fillers, the nanocomposites show a Tg depression. For the determination of the reason for the Tg depression, the thermomechanical and dielectric relaxation processes of the silica nanocomposites have been investigated with dynamic mechanical analysis and dielectric analysis. The Tg depression is related to the enhanced polymer dynamics due to the extra free volume at the resin–filler interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3849–3858, 2004  相似文献   

12.
Rubbing‐induced molecular alignment and its relaxation in polystyrene (PS) thin films are studied with optical birefringence. A novel relaxation of the alignment is observed that is distinctly different from the known relaxation processes of PS. First, it is not the Kohlrausch–Williams–Watts type but instead is characterized by two single exponentials plus a temperature‐dependent constant. At temperatures several degrees or more below the glass‐transition temperature (Tg), the relaxation time falls between that of the α and β relaxations. Second, the decay time constants are the same within 40% for PS with weight‐average molecular weights (Mw's) of 13,700–550,000 Da at temperatures well below the sample Tg's, indicating that the molecular relaxations involved are mostly local within the entanglement distance. Nonetheless, the temperature at which the rubbing‐induced molecular alignment disappears (T0) exhibits a strong Mw dependence and closely approximates the Tg of the sample. Furthermore, T0 depends notably on the thickness of the polymer in much the same way as previously found for the Tg of supported PS films. This suggests that the α process becomes dominant near Tg. Preliminary spectroscopic studies in the mid‐infrared range show a significant degree of bending of the phenyl ring toward the sample surface, with the C? C bond connecting the phenyl ring and the main chain tends to lie along the rubbing direction, which indicates that the relaxation is connected with the reorientation of this C? C bond. We exclude the observed relaxation, as predominantly a near‐surface one, because detailed studies on the effects of rubbing conditions on the degree of molecular alignment indicate that the alignment is not local to the polymer–air surface. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2906–2914, 2001  相似文献   

13.
A comparative study on the mechanical and dielectric relaxation behavior of poly(5‐acryloxymethyl‐5‐methyl‐1,3‐dioxacyclohexane) (PAMMD), poly(5‐acryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PAMED), and poly(5‐methacryloxymethyl‐5‐ethyl‐1,3‐dioxacyclohexane) (PMAMED) is reported. The isochrones representing the mechanical and dielectric losses present prominent mechanical and dielectric β relaxations located at nearly the same temperature, approximately −80°C at 1 Hz, followed by ostensible glass–rubber or α relaxations centered in the neighborhood of 27, 30, and 125°C for PAMMD, PAMED, and PMAMED, respectively, at the same frequency. The values of the activation energy of the β dielectric relaxations of these polymers lie in the vicinity of 10 kcal mol−1, ∼ 2 kcal mol−1 lower than those corresponding to the mechanical relaxations. As usual, the temperature dependence of the mean‐relaxation times associated with both the dielectric and mechanical α relaxations is described by the Vogel–Fulcher–Tammann–Hesse (VFTH) equation. The dielectric relaxation spectra of PAMED and PAMMD present in the frequency domain, at temperatures slightly higher than Tg, the α and β relaxations at low and high frequencies, respectively. The high conductive contributions to the α relaxation of PMAMED preclude the possibility of isolating the dipolar component of this relaxation in this polymer. Attempts are made to estimate the temperature at which the α and β absorptions merge together to form the αβ relaxation in PAMMD and PAMED. Molecular Dynamics (MD) results, together with a comparative analysis of the spectra of several polymers, lead to the conclusion that flipping motions of the 1,3‐dioxacyclohexane ring may not be exclusively responsible for the β‐prominent relaxations that polymers containing dioxane and cyclohexane pendant groups in their structure present, as it is often assumed. The diffusion coefficient of ionic species, responsible for the high conductivity exhibited by these polymers in the α relaxation, is semiquantitatively calculated using a theory that assumes that this process arises from MWS effects, taking place in the bulk, combined with Nernst–Planckian electrodynamic effects, due to interfacial polarization in the films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2486–2498, 1999  相似文献   

14.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

15.
We report dielectric relaxation and Rayleigh-Brillouin spectroscopic measurements on the side chain polymer poly(n-hexylmethacrylate), PHMA (Tg = 268 K), exhibiting a broad glass transition region. The dielectric loss curves can be represented by single Havriliak-Negami functions in the temperature range of 260–450 K. The width of the distribution relaxation function is a decreasing function of temperature up to T = 333 K ≊ 1.24 × Tg and remains virtually constant above that temperature. This is interpreted as marking the merging of the α-process with a slow β-relaxation in agreement with the value of the cooperativity length associated with the α-mode. Hence above that temperature, the relaxation times confirm well to an Arrhenius temperature dependence. The hypersonic dispersion deduced from the Brillouin spectra (210–550 K) surprisingly peaks at temperatures near Tg which bears no relation to the main α-relaxation. This structural relaxation is rather associated with the side hexyl group motion showing striking resemblance with the hypersonic dispersion in molecular liquids. It is conceivable that the observed damping in PHMA is dynamically related to the internal plasticization effect of the hexyl group. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Cellulose derivatives with low degrees of substitution (i.e., DS < 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., > C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm ? Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm ? Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual-melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley & Sons, Inc.  相似文献   

17.
Three fluorinated benzoxazines ( 14–16 ), which cannot be synthesized by the traditional one‐step approaches, were synthesized by a three‐step procedure using fluorinated aromatic diamines ( 2–4 ) as starting materials. The structures of the monomers were confirmed by 1H NMR, IR, and high‐resolution mass spectra. The low dielectric thermosets, P( 14–16 ), were prepared by ring‐opening of ( 14–16 ). IR analysis was utilized to monitor the ring‐opening reaction of ( 14–16 ) and to propose the structures of P( 14–16 ). The thermal and dielectric properties of P( 14–16 ) were studied and compared with a nonfluorinated polybenzoxazine P( 13 ), which is derived form the ring‐opening of 2,2‐bis(4‐aminophenoxy)phenyl)propane ( 1 ). Besides, the structure–property relationship of the P( 13–16 ) is discussed. According to Tg measurement, the ortho‐positioned CF3 substituents impart greater steric hindrance for ring‐opening of benzoxazines than CF3 substituents of hexafluoropropane. Incorporating a biphenol F‐based benzoxazine, ( F‐a ), into fluorinated benzoxazines ( 15–16 ) can dilute the effect of ortho‐positioned CF3 substituents on steric hindrance, leading to a higher crosslinking density and consequently a higher Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4970–4983, 2008  相似文献   

18.
Thermorheological simplicity is shown to hold for poly(vinyl acetate) in the temperature range extending from Tg + 25°C to Tg + 80°C. Between Tg and Tg + 25°C the softening (glass to rubberlike) viscoelastic dispersion exhibits time-scale shift factors aT different from those of the terminal (rubberlike to steady-state) dispersion. The aT values calculated from zero-shear viscosities coincide with those from the terminal dispersion in the temperature range 60–154°C (Tg ? 35°C). The aT shifts obtained from the response in the terminal dispersion can be fitted to the Williams, Landel, and Ferry equation over the entire temperature range 42–154°C. The aT obtained from the softening dispersion is shown to exhibit a different functionality. An empirical modification of the Doolittle equation yields a very flexible relation which can be fitted to some aTs which cannot be represented by the usual Doolittle free-volume expression.  相似文献   

19.
The glass transition temperature Tg of propylene glycol (PG) and poly(propylene glycols) (PPGs) of molecular weight up to 4000 has been measured by differential scanning calorimetry, and the activation energy and change in heat capacity ΔCp have been determined in the glass transition range. The activation energy increases with an increase in the molecular weight of the polymer, and ΔCp measured at a fixed heating rate decreases. The increase in Tg with molecular weight is remarkably more rapid for poly(propylene glycols) than for other polymers, and a limiting value of Tg is reached for a chain containing 20 monomer units. These results are discussed in terms of the Fox-Flory and the entropy theories. The calorimetric relaxation times are comparable with the extrapolated dielectric relaxation times. The initial increase of ΔCp from PG to PPG 200 is attributed to the decrease of H-bonding sites from 12 in 3 monomers to 4 on polymerization to PPG 200 and further decrease with increase in molecular weight to an increasingly large amplitude of the β-process at T < Tg.  相似文献   

20.
The structures of methyl 3β‐acetoxy‐12‐oxo‐18β‐olean‐28‐oate [C33H52O5, (I)] and methyl 3β‐acetoxy‐12,19‐dioxoolean‐9(11),13(18)‐dien‐28‐oate [C33H46O6, (II)] are described. In (I), all rings are in the chair conformation, rings D and E are cis and the other rings trans‐fused. In compound (II), only rings A and E are in the chair conformation, ring B has a distorted chair conformation, ring C a distorted half‐boat and ring D an insignificantly distorted half‐chair conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号