首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixed-acid monounsaturated lecithin, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphorylcholine (POL), has been synthesized by phospholipase A2 digestion of 1,2 dipalmitoyl-sn-glycero-3-phosphorylcholine followed by reacylation of the lysolecithin with oleic anhydride. 1H (90 MHz) and 13C (25.2 MHz) NMR spectra of POL in CDCl3 solution and in sonicated dispersions in 2H2O have been obtained, and spin-lattice relaxation times measured. The relaxation times were characteristic of the type of structure formed and reflect molecular motion within the lecithin molecule in each structure. In both systems the spin-lattice relaxation times increase along the alkyl chains towards the terminal methyl group, showing a corresponding increase in the chain molecular motion, although there are significant differences in the gradation of the changes.  相似文献   

2.
This article describes dielectric properties of complex Zn(II) salts of ethylene-methacrylic acid copolymer (5.4 mol% methacrylic acid) with n-hexylamine. In all samples, the β′ relaxation near 340 K and γ relaxation near 170 K are observed. These are assigned, respectively, to micro-Brownian molecular motion of long segments above Tg and to local molecular motion of short segments below Tg. The dielectric results indicate that ionic clusters are not formed in these systems.  相似文献   

3.
The dynamic viscosity of aqueous solutions of poly(acrylic acid) at a polymer concentration of ca. 0.15 g/100 ml has been measured at frequencies from 2 to 500 kHz as a function of degree of polymerization P, degree of neutralization α, and salt (NaCl) concentration Cs. Relaxation spectra have been obtained from the dynamic viscosity. The spectra in the short relaxation time region can be approximated by the Zimm theory for the conformational relaxation of nonionic polymers. The maximum relaxation time τ1 of the Zimm spectra is proportional to P2 and depends rather moderately on α and Cs. Increased deviation is found, however, in the long relaxation time region, in particular for high values of P and α and low values of Cs. The major part of the deviation is interpreted in terms of rotational relaxation of a molecule as a whole. The rotational relaxation time τR is proportional to P3 and increases with increasing α and decreasing Cs. The remaining part of the excess spectra located between τ1 and τR is ascribed to the deviation of the conformational relaxation from the Zimm theory arising from ionization of the polymer.  相似文献   

4.
The relaxation behavior of a series of polysiloxane dizwitterionomers has been studied by using dynamic mechanical and dielectric spectroscopy. The temperature range was 100–375 K and the frequency was ca. 1 Hz in the mechanical measurements and 50 Hz–50 kHz in the dielectric measurements. Three relaxation regions, labeled αs, β, αz in order of increasing temperature, were observed. The βs relaxation was assigned to the nonionic portion of the siloxane chain and correlated with the glass transition of polydimethylsiloxane. The β and αz processes are ionic-related relaxations; β probably originated from the motion of a chain segment carrying a dizwitterion, and αz, from the collapse of the organization in the ionic domains. Absorbed water exerts a profound influence on relaxation behavior–primarily on αz ionic relaxation and the relative rigidity of the samples. The water molecules solvate the ions and thus shift the αz relaxation to lower temperatures. Some aspects of the effect of thermal history on the microphase separation into domains have also been investigated. The results indicate that the organization of the zwitterions in the ionic domains is improved at slow cooling rates.  相似文献   

5.
The effects of hydrostatic pressure to 20 kbar on the β molecular relaxation process of polyvinylidene fluoride (PVDF) and on the dielectric properties in the neighborhood of this relaxation have been investigated. This relaxation has a strong influence on the electrical and mechanical properties of PVDF. Pressure causes a large shift to higher temperatures (~ 10K/kbar) of the dielectric relaxation peak and a decrease in the width of the distribution of relaxation times. This slowing down of the relaxation process is discussed in terms of the Vogel–Fulcher equation and related models, and it results from an increase in both the energy barrier to dipolar motion and the reference temperature (T0) for the kinetic relaxation process which represents the “static” dipolar freezing temperature for the process. The general applicability of the Vogel–Fulcher equation to relaxional processes in polymers and other systems is briefly discussed. The pressure dependence of the dielectric constant both above and below the relaxation peak temperature (Tmax) is found to be dominated by the change in polarizability. The effect is larger above Tmax because of the relatively large decrease in the dipolar orientational polarizability with pressure.  相似文献   

6.
The diglycidyl ether of bisphenol-A, an uncured epoxy resin, has been studied by pulsed NMR. Values of the proton relaxation times T1, T1p, and T2 have been measured over the temperature range from ?160 to 200°C. The resin was studied in its monomeric form and in two mixtures containing higher oligomers. The relaxation times are interpreted in terms of the molecular motion in the resins. The motion responsible for relaxation in the solid monomer form is thought to be methyl group reorientation at low temperatures and general molecular motion at high temperatures. The motions are characterized by activation energies of 5 kcal/mole and 33 kcal/mole, respectively. The solid mixtures exhibit similar effects to the monomer, but an additional relaxation mechanism is observed which is attributed to segmental motion. This motion is characterized by an activation energy of 12–15 kcal/mole. The self-diffusion coefficient was measured in the liquid monomer, and the activation energy for self-diffusion is found to be 11 kcal/mole.  相似文献   

7.
It is well known that polycarbonate annealed at 80–130°C undergoes gradual changes in mechanical properties. Annealing below Tg (ca. 150°C) results in a decrease in impact resistance and an increase in strength. Polycarbonate has three single relaxation processes and some distributed relaxation processes in the temperature range between 100 and 250°K (the β transition region). The effect of thermal pretreatment on the relaxation has been investigated by the thermally stimulated discharge current technique. Partial heating, peak cleaning, and theoretical fitting have also been performed and the activation parameters associated with the relaxation processes have also been calculated to assist in the analysis of the relationship between effects of annealing and structural motions in polycarbonate.  相似文献   

8.
The effect of the α-methyl group on the mobility of the main and side chains of methacrylateacrylate copolymers has been investigated. Poly(ethyl acrylate) shows a small secondary loss maximum (attributed to the rotation of ? COOR side chains) at 145 K, while in the case of poly(n-butyl acrylate) this relaxation process is smeared out or possibly absent. On the contrary, poly(n-butyl methacrylate) and poly(2-hydroxyethyl methacrylate) exhibit secondary relaxations at about 278 and 301 K, respectively. From the dynamic mechanical response spectra of methacrylate-acrylate copolymers one can see that the removal of the α-methyl group causes a qualitative change in the molecular mechanism of the secondary relaxation, presumably as a consequence of the different participation of the main chains. The existing data, however, are insufficient to quantify these differences. The low-temperature relaxation attributed to internal motion within the side groups is not distinctly affected by the presence of α-methyl groups. If both components of the copolymer display the low-temperature relaxation (above 77 K), the loss maxima preserve their identity to a large extent. The effect of copolymer composition on the main (glass) transition temperature has been described by means of a one-parameter equation.  相似文献   

9.
Isothermal enthalpy relaxation in polystyrene was measured as a function of temperature and molecular weight on a differential scanning calorimeter. Relaxation spectra were derived from the data and expressed as a distribution of relaxation times. For a given molecular weight the relaxation spectra at different temperatures could not be superimposed by a shift in time. The relaxation curves of samples of different molecular weights could be superimposed only when the difference between the temperature at which the relaxation was monitored (Ta) and their respective Tg was the same. The relaxation spectrum at any temperature for a given molecular weight was also expressed as a distribution of energies. The average energy represented by this distribution was associated with an activation energy required for the motion of a chemical repeat unit. The activation energy extracted from the temperature shift in the relaxation spectra corresponded to the motion of a statistical unit (Kuhn's segment) in polystyrene.  相似文献   

10.
We report dielectric relaxation and Rayleigh-Brillouin spectroscopic measurements on the side chain polymer poly(n-hexylmethacrylate), PHMA (Tg = 268 K), exhibiting a broad glass transition region. The dielectric loss curves can be represented by single Havriliak-Negami functions in the temperature range of 260–450 K. The width of the distribution relaxation function is a decreasing function of temperature up to T = 333 K ≊ 1.24 × Tg and remains virtually constant above that temperature. This is interpreted as marking the merging of the α-process with a slow β-relaxation in agreement with the value of the cooperativity length associated with the α-mode. Hence above that temperature, the relaxation times confirm well to an Arrhenius temperature dependence. The hypersonic dispersion deduced from the Brillouin spectra (210–550 K) surprisingly peaks at temperatures near Tg which bears no relation to the main α-relaxation. This structural relaxation is rather associated with the side hexyl group motion showing striking resemblance with the hypersonic dispersion in molecular liquids. It is conceivable that the observed damping in PHMA is dynamically related to the internal plasticization effect of the hexyl group. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
13C NMR NT1 and NOE have been calculated by using composite spectral density functions describing polymer chain segmental motion and internal rotation of a hydrocarbon side chain attached to the polymer backbone. Numerical results at two magnetic fields are presented as a function of the various motional parameters characterizing the various models. NT1 and NOE relaxation parameters are well behaved and appear to have practical value for describing the dynamics of these systems. The models have been applied to the relaxation data of poly(n-butyl methacrylate) and poly(n-hexyl methacrylate) in toluene solutions. The dynamics of the two polymers are characterized by a very localized backbone motion and restricted internal rotation about successive C? C bonds of the side chains. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

13.
The effects of poling temperature on piezoelectricity and its thermal stability were investigated on the basis of the thermal molecular motion associated with the crystalline region. This was done by using a film of highly oriented poly(vinylidene fluoride) containing form-I crystals. The film was prepared by a zone-drawing apparatus of the forced-quenching type. The piezoelectric stress constant e31 is a monotonically increasing function of the poling temperature which becomes steeper above ca. 320 K and again at ca. 400 K. The degree of orientation of the crystal b axis generated by poling also increases more steeply with poling temperature above ca. 320 K and again at 400 K. These temperatures correspond, respectively, to the crystalline dispersion temperature at 11 Hz, designated as αc, and the initiation temperature Tpm of large-scale molecular motion corresponding to premelting of form-I crystals. Thus the effect of poling temperature on piezoelectricity closely reflects the moleculer motion in form-I crystals. The annealing temperature T'a at which e31 decreases to 70% of that of unannealed sample by annealing a poled sample increases with the poling temperature and again this increase is steeper above poling temperatures of ca. 320 K and ca. 400 K. Thus the decay of piezoelectricity depends on both the αc temperature and Tpm.  相似文献   

14.
Pulsed NMR spectra of protons in polysilastyrene, $ \rlap{--} [{\rm Si(CH}_{\rm 3} {\rm )}_{\rm 2} {\rm  Si(CH}_{\rm 3} )({\rm C}_6 {\rm H}_5 )\rlap{--} ]_n $, with n ≈ 60, have been measured in the temperature range 80–450 K. The linewidth is constant at 7.4 G up to 200 K and narrows considerably above 250 K to a constant value of 0.3 G above 360 K. The motion responsible for this effect has an activation energy of 43.7 kJ/mol and is identified with the large-scale motion occurring in the vicinity of the glass transition temperature. The spin-lattice relaxation time T1 was measured by the π-t-½π pulse sequence as a function of temperature. Two motional minima in T1 were observed. The low-temperature motion has an activation energy of 3.7 kJ/mol and is identified with methyl group reorientation. The high-temperature motion has an activation energy of 29.1 kJ/mol and might be due to segmental motion.  相似文献   

15.
Phosphorescence depolarization measurements, under steady state polarized excitation, have been used to examine the relaxation behavior of bulk poly(methyl methacrylate) (PMMA). Poly(methyl methacrylate) bearing phosphorescent labels has been synthesized by copolymerization of small quantities of acenaphthylene (I), 1-vinylnaphthalene (II), 2-vinylnaphthalene (III), 1-naphthyl methacrylate (IV), and 2-naphthyl methacrylate (V), respectively, with methyl methacrylate. In no case was depolarization of emission due to probe rotation apparent below the onset of the β-relaxation of the polymer. Rotation of label V was characterized by an activation energy of 94 kJ mole?1 in excellent agreement with that of the β relaxation measured by conventional relaxation techniques. This result clearly implicates ester motion in the β relaxation. No motion of label I, which cannot move independently of the polymer backbone, was evident in the vicinity of the β relaxation. Above 378 K the activation energy for rotational relaxation of label I of 460 kJ mole?1 is in excellent agreement with published data for the α transition in PMMA. This result is in accord with the general assumption that backbone segmental motion is involved in the α relaxation. However, backbone motion of lesser temperature dependence (Ea = 115 kJ mole?1) is apparent from depolarization behavior of probe I between 343 and 378 K. Label II shows three regions of relaxation behavior. In the temperature range above the β transition motion of the label independent of the polymer is evident (Ea = 44 kJ mole?1). At temperatures in excess of 343 K this motion becomes cooperative with that of the backbone yielding activation energies comparable to those obtained in system I. Label III, while exhibiting depolarization characteristics similar to those of label II in the vicinity of the β relaxation, emitted insufficient intensity to permit estimation of an energy of activation for the motion. The phosphorescence of label IV was completely depolarized over the entire temperature range studied. While phosphorescence intensity and lifetime data may be used to detect the existence of polymeric transitions, the photophysical behavior of the naphthalene species studied is independent of the attachment to the polymer and does not primarily yield information regarding the polymer relaxations.  相似文献   

16.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

17.
Two dielectric relaxations have been studied on poly(2-vinyl-N-ethylcarbazole) (P2VK) and poly(3-vinyl-N-ethylcarbazole)(P3VK), poly(2-vinylanthracene) (P2VA) and poly(α-methyl-2-vinylanthracene) (PMe2VA). The relaxations in P2VK and P3VK occur in the temperature regions 220°C and ?150°C. Evidence for a third relaxation in both polymers at ca. 120°C has been found; and, for this reason, the relaxations studied (220°C and ?150°C) are labeled α and β, respectively, and have been attributed to Tg and carbazole rotational libration about the bond connecting the carbazole moiety to the polymer backbone. Additionally β (ca. 20°C) and γ(ca. ?150°C) relaxations in P2VA and MeP2VA have been observed and assigned, respectively, to wagging motion and rotational libration of the pendant anthracene moiety.  相似文献   

18.
Dielectric spectra of H2O and D2O molecules in the Lα liquid crystalline phase of nonylphenoxy-poly(ethylenoxy)ethanol(Ark. 9)/water lyotropic systems have been investigated by dielectric time domain spectroscopy in the frequency range from 10 MHz to 10 GHz. By fitting the Cole-Cole formula to the dielectric spectra, obtained at different temperatures the dielectric increments, the relaxation times and the distribution parameters have been calculated. A strong retardation of water molecules has been found for the lamellar phase with low water content, i.e. 10 water molecules (H2O or D2O) per one Ark. 9 molecule. The relaxation times obtained at room temperature for the light and heavy water are 63 and 93 ps, respectively. It means that the retardation factor for D2O molecules in the Lα phase is close to 1.5 and higher than that found for pure heavy water (1.25). Any decomposition of the dielectric spectra obtained seems to be unsubstantiated. The temperature dependences of the relaxation times acquired for both kinds of water obey the Arrhenius behaviour.  相似文献   

19.
The dielectric permittivity and loss of poly(vinyl pyrrolidone), molecular weight 40,000, containing 40% (by weight) water have been measured over the temperature range 77–325 K and frequency range 12 Hz to 0.1 MHz. A prominent relaxation due to rotational diffusion of water molecules in a hydrogen-bonded structure occurs at T < Tg (237 K). The half-width of the dipolar relaxation spectra is 2.27 decades and is temperature independent, which is strikingly different from the corresponding features of pure polymers. It is concluded that H-bonded amorphous solid water persists in the glassy polymer matrix and that the H-bonded structure contains the pyrrolidone side groups of the randomly oriented chain. The relaxation peak at T near Tg is masked by a large dc conductivity which, when expressed in terms of electric modulus, has a spectrum of half-width 1.37 instead of 1.14 decades expected for dc conductivity alone. The contribution from dipolar reorientation in the glass-rubber range of the PVP-H2O solution is smaller than that in its sub-Tg relaxation.  相似文献   

20.
The temperature spectra of internal friction of polyetheretherketone (PEEK) are investigated from 130K to 250K with a multi-function torsion pendulum in the frequency range of 0.1 Hz to 5 Hz. A relaxation process, γrelaxation, appears in the temperature range of the measurement. Its relaxation time distribution in terms of a Gaussian distribution, and the relation between molecular motion mechanism and the distribution characteristic are discussed. The element process of γrelaxation is found to be a disordering one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号