首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a continuing study of ion-containing polymers, a comparison has been made on styrene-based sulfonate ionomers obtained by two different processes. Copolymers of styrene with sodium styrene sulfonate (SSS) have been compared with corresponding polymers obtained by the sulfonation/neutralization of preformed polystyrene (S–PS). The former system covered a range of sulfonate level from 1 to 30 mol %, while the latter ranged from about 1 to 7 mol %. The characterization of these materials has been conducted using solubility behavior, dilute solution viscometry, thermal mechanical analysis, density measurements, and water adsorption studies. At low (ca. 1%) levels the solubility behavior of the SSS copolymers and the sulfonated polystyrenes were similar. However, at higher sulfonate levels the solubility behavior in different solvents and the dilute solution viscometry were significantly different for the two systems. Similarly, thermal analysis studies (DSC) showed that the glass transition of the sulfonated polystyrene increased linearly with sulfonate level, while the Tg for the SSS copolymer increased modestly, up to about 7 mol % sulfonate content, and then remained constant. Significant differences in the softening behavior and water absorption characteristics were also observed for these two classes of ionomers. Although molecular weights and molecular weight distributions are not now available for these ionomers, the differences in their behavior does not appear to be due simply to differences in molecular weight. It is postulated that the differences in the copolymer and the S–PS ionomers may originate with differences in sulfonate distribution. It is suggested that the SSS monomer units are incorporated as blocks in the copolymer as opposed to a more random distribution in the S–PS ionomer. Indirect evidence in support of his argument is found, for example, in the case of the copolymer in the solubility behavior, the relative independence of Tg on sulfonate concentration and the apparent existence of a second, high temperature transition tentatively attributable to an ion-rich phase. Additional studies are required to confirm this hypothesis.  相似文献   

2.
Poly(styrene-co-diethyl vinylphosphonate) copolymers were synthesized by free radical copolymerization. The ester groups of the copolymers were hydrolyzed to phosphonic acid groups, and the sodium and zinc salts ionomers were obtained by neutralization. The structure and the thermal and viscoelastic properties of the copolymers and ionomers were characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and small-angle X-ray scattering. The phosphonate ester lowered the glass transition temperature (Tg) of polystyrene. The free acid derivatives and metal phosphonates increased Tg and produced a rubbery plateau region in the viscoelastic properties due to the formation of a physical network. The acid and salt ionomers exhibited microphase-separated morphologies and were thermorheologically complex. The phosphonic acid derivatives absorbed relatively little water, even for materials with ion-exchange capacities greater than 1.0 mEq/g, and were not conductive, which made them unsuitable for application as proton exchange membranes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3628–3641, 2004  相似文献   

3.
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.  相似文献   

4.
The objective of this study is to analyze the glass transition temperature and relaxation processes of low molecular weight polystyrene-block-polyisoprene diblock copolymers with different compositions, synthesized via anionic polymerization. Thermal properties were investigated by differential scanning calorimetry and dynamic-mechanical thermal analysis, while the morphologies at room temperature were investigated by transmission electron microscopy and small-angle X-ray scattering. The χN values indicate that the diblock copolymers lie near the weak segregation regime. Three different experimental techniques were applied to determine the dynamic properties, i.e., linear viscoelastic shear oscillations, creep recovery experiments, and dielectric spectroscopy. The rheological experiments were performed above the order–disorder transition temperature where the diblock copolymers behave like a Maxwell fluid. Our results indicate that the presence of the polyisoprene segments strongly influences the monomeric friction coefficient and the tendency to form entanglements above the order–disorder temperature. Consequently, the zero-shear rate viscosity of a diblock copolymer is much lower than the zero-shear rate viscosity of the neat polystyrene block (the polystyrene precursor of the polymerization procedure). Dielectric spectroscopy enables the analysis of relaxation processes below the glass transition of the polystyrene microphase. Frequency sweeps indicate the dynamic glass transition of the polyisoprene blocks, which are partly mixed with the polystyrene blocks, which are always the majority component in the block copolymers of this study.  相似文献   

5.
通过氯磺化共聚物的水解合成了乙烯-丙烯共聚物磺酸钠离聚物,对离聚物的结晶度和其中硫、氯、钠元素的含量进行了表征.当离子含量达到5—7 mol%时,离聚物的LAXD曲线出现离子峰;DSC指出T_g急剧升高,而低于此离子浓度的离聚物均不出现这些现象.反映出此离子浓度下的离聚物,离子基因可能聚集形成离子簇结构.  相似文献   

6.
The effect of polar and nonpolar low molar mass diluents on the microstructure of lightly sulfonated polystyrene (SPS) ionomers was studied using electron spin resonance spectroscopy, small-angle x-ray scattering, and dynamic mechanical analysis. Nonpolar diluents primarily affected the hydrocarbon - rich phase, while polar diluents partitioned into the ion-rich regions and disrupted the supramolecular structure. The ionic clusters remained intact, even at elevated temperatures, upon the addition of nonpolar solvents such as dodecane and dioctylphthalate. More polar solvents such as methanol and glycerol swelled the ionic domains and promoted increased mixing of the two phases.  相似文献   

7.
A Fourier transform infrared/attenuated total reflectance technique was used to study the diffusion of water through poly(styrene‐b‐isobutylene‐b‐styrene) block copolymers (BCPs), as well as sulfonated (H+) and Na+‐sulfonated ionomer versions. Diffusion data were collected and interpreted for these membranes versus polystyrene block composition, degree of sulfonation, Na+ ion content in the ionomers, and the effect of initially dry versus prehydrated conditions. An “early time” diffusion coefficient, D, decreased with increasing percent polystyrene for a series of unmodified BCPs. D decreased with increasing degree of sulfonation, and with increasing ion content for the Na+‐exchanged samples and this was interpreted in terms of diffusion limitations caused by a strong tendency for ion hydration. The method also yielded information relating to the time evolution of water structure from the standpoint of degree of intermolecular hydrogen bonding. Membrane prehydration causes profound increases in D for both the unmodified BCP and sulfonated samples, as in plasticization. The simultaneous acquisition of information relating to interactions between water molecules and interactions of water molecules with functional groups on the host polymer matrix offers more information than conventional diffusion measurement techniques that simply count transported molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 764–776, 2005  相似文献   

8.
Structure and dielectric relaxations of antibacterial sulfonated polystyrene (SPS) and silver nanocomposites (SPS/Ag) were investigated via broadband dielectric spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, differential scanning calorimetry, scanning electron microscopy, and wide‐angle X‐ray diffraction. SPS/Ag nanocomposites were prepared from SPS containing 2, 4, and 7 mol% of acid contents, followed by ion exchange and a reduction process. Silver nanoparticles were formed in the structural cavities of SPS films. The single glass transition temperature of the SPS copolymers was observed and increased with increasing acid contents and more enhanced with embedded silver nanoparticles because of the restriction of the polymer chain movement. The particle size of embedded silver nanoparticles was about 10 nm and well dispersed in SPS matrices. Four dielectric relaxations were observed above the glass transition temperature, and they were attributed to the fast segmental relaxation, the slow‐hindered segmental relaxation, relaxations associated with Maxwell–Wagner–Sillars interfacial polarization and electrode polarization. Weak local relaxations were observed due to the motion of sulfonated phenyl groups. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The dynamic melt rheology of random copolymers of polystyrene with 2–9 mol% 4-vinylpyridine was examined in their quaternized and nonquaternized forms. Time–temperature reducibility applies in all cases. Relative to the glass transition, the master curves of the nonquaternized materials are identical. Melt flow in the quaternized materials is mildly retarded, the extent increasing with ion content. At the highest ion contents, the relaxation processes appear to be of Arrhenius type. As in the glass transition region, the ionic interactions in the plateau and terminal zones are thermally labile.  相似文献   

10.
The new series of the LC ionomers containing copper ions has been obtained and their phase behavior has been studied. It was shown that at low metal ion concentrations in the LC ionomers (˜2 mol‐%) the induction of the SmA phase is observed. An increase in the copper ion concentration is accompanied by a slight rise in clearing and glass transition temperatures. The magnetic properties of LC ionomers were studied at the first time. It was shown that LC ionomers are antiferromagneties with a strong exchange interaction J = 174–178 cm–1. Temperature dependencies of the magnetic moment and the magnetic anisotropy are adequately described in the framework of the 1‐D‐Heisenberg linear‐chain model.  相似文献   

11.
The glass transition temperatures and heat capacity changes in the transition region are reported for six sulfonated linear polystyrenes in the hydrogen form, H-SPS, in the 3.4–20.1 mol % sulfonation range and 76 metal SPS ionomers in the 3.4–12.8 mol % range. The metals are those which interact predominantly ionically and include +1, +2, and +3 ions of the alkali metal, alkaline earth, and rare earth (lanthanide) series. The results show the effect of H2O or coordinating ligands on glass transition temperatures (Tg) and the importance of eliminating it to obtaining reproducible values for Tg and ΔCp. The Tg values of dry M-SPS ionomers depend only on the sulfonation level despite wide variation in metal ion charge and size. The variation of ΔCp with sulfonation level is interpreted as showing that at high levels a few unsulfonated styrene units adjacent to sulfonated ones are constrained, presumably by clustering, from participation in the polystyrene-like cooperative rearrangements in the transition region.  相似文献   

12.
Dynamic viscoelastic properties of S—B—S block copolymers were measured in the tensile and shear deformation modes. Between the glass transitions of the polybutadiene and polystyrene domains the ratio of storage moduli E'/G' in tension and in shear for the same polymer varied from 3 to more than 30, depending on sample preparation. For films cast from good solvents this ratio was near 3; large ratios resulted from deposition from poor polybutadiene solvents or from compression molding. Above the polystyrene glass transition, E'/G' approached 3 for all samples. The effect is ascribed to various degrees of polystyrene domain connectivity. Electron micrographs confirm this interpretation. For morphologies of high polystyrene domain connectivity, the loss tangent in tension is heavily weighted by mechanical losses in the polystyrene phase; the loss tangent in shear is affected only moderately by differences in domain morphology.  相似文献   

13.
采用DSR-200动态应力流变仪研究了磺化度为0.98%(摩尔分数)的轻度磺化聚苯乙烯(SPS)离聚物及其锌盐(ZnSPS)与聚苯乙烯(PS)的共混物(PS/SPS,PS/ZnSPS)的流变性能.由于离聚物中离子聚集的物理交联作用,使其流变性能与PS相比有明显差别.动态频率实验结果表明,所有样品均可采用时温等效处理.另外,在与分子链运动相关的低频区,由于离子聚集的作用使得离聚物的模量远大于PS的模量.离聚物在稳态剪切作用下,由于离子聚集的破坏而表现出明显的屈服现象,并能用Utracki的屈服应力公式表征其屈服应力和零切粘度.此外,离聚物的屈服现象还与温度相关.由于动态和稳态实验分别测试离子聚集存在和破坏的不同材料状态,因此对离聚物无法应用Cox-Merz规则.动态和稳态实验结果均表明,PS/SPS和PS/ZnSPS的性能与组成的变化规律不同,意味着二者之间存在不同的离子聚集结构或相互作用.  相似文献   

14.
The synthesis of chain‐end sulfonated polystyrene [PS (ω‐sulfonated PS)] by reversible addition fragmentation chain transfer (RAFT) polymerization followed by postpolymerization modification was investigated by two methods. In the first method, the polymer was converted to a thiol‐terminated polymer by aminolysis. This polymer was then sulfonated by oxidation of the thiol end‐group with m‐chloroperoxybenzoic acid (m‐CPBA) to produce a sulfonic acid end‐group. In the second method, the RAFT‐polymerized polymer was directly sulfonated by oxidation with m‐CPBA. After purification by column chromatography, ω‐sulfonated PS was obtained by both methods with greater than 95% end‐group functionality as measured by titration. The sulfonic acid end‐group could be neutralized with various ammonium or imidazolium counter ions through acid–base or ionic metathesis reactions. The effect of the ionic end‐groups on the glass transition temperature of the PS was found to be consistent with what is known for PS ionomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The thermal properties of an ionomer glass, lightly sulfonated polystyrene, was studied as a function of aging at room temperature after being cooled from the melt. An anomalous endothermic event below Tg was observed by differential scanning calorimetry; the intensity of this excess enthalpy was a function of time and sulfonate concentration. It is suggested that the origin of this relaxation may be due in part to morphological changes that occur as a consequence of electrostatic interactions of the sulfonate groups.  相似文献   

16.
Multiblock copolymers 1a (Mn = 31,500–47,400) of sulfonated poly(aryl ether)s were synthesized by polycondensation of 4,4′‐difluorobenzophenone (DFBP), bis(4‐hydroxyphenyl)sulfone (BHPS), and an hydroxy‐terminated sulfonated oligomer, which was synthesized from DFBP and 2,2′,3,3′,5,5′‐hexaphenyl‐4,4′‐dihydroxybiphenyl a . The copolymerization of trimeric monomer b with DFBP and BHPS gave a series of copolymers 1b (Mn = 26,200–45,900). The copolymers were then sulfonated with chlorosulfonic acid to give ionomers 3a with hydrophilic multiblock segments and ionomers 3b with segments containing clusters of 18 sulfonic acid groups. The proton exchange membranes cast from ionomers 3a and 3b were characterized with regard to thermal stability, water uptake, proton conductivity, and morphology. Transmission electron microscopy images of 3a‐1 and 3b‐1 revealed a phase separation similar to that of Nafion that may explain their higher proton conductivities compared with randomly sulfonated copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4762–4773, 2009  相似文献   

17.
Zinc-neutralized sulfonated polystyrene ionomers (ZnSPS) and poly(2,6-dimethyl 1,4-phenylene oxide) homopolymer (PXE) form miscible blends up to at least 7.8 mol % sulfonation, as measured by thermal and mechanical criteria. The addition of an equal weight of PXE raises the glass transition temperature of ZnSPS by 40–50°C. However, this miscibility is not achieved by eradicating the microdomain structure present in ZnSPS, even though the PXE coils are considerably larger than the spacings between ionic aggregates. Small-angle x-ray scattering indicates that while the average interaggregate spacing is roughly the same in ZnSPS and its 50/50 blend with PXE at a given sulfonation level, the extent of phase separation is reduced upon PXE addition, indicating that more ionic groups are dispersed in the matrix. Factors influencing miscibility in the ZnSPS/PXE materials and related blends are discussed.  相似文献   

18.
The effect of counterions on the solution properties of two types of ionomers, one based on sulfonated polystyrene and the other based on styrene–methacrylic acid copolymer, was studied by viscosity and light scattering measurements. It was found that the order of counterion binding of ionomers in a polar solvent and the order of aggregation of ionomers in a low-polarity solvent were the same for the same ionomer system. However, the order for the sulfonated ionomer was Li < Na < K < Cs, whereas that for the carboxylated ionomer was the opposite. This can be explained by a difference in desolvation during anion–cation interaction and by considering site-binding in a polar solvent and the association of ion pairs in a low-polarity solvent. These findings for ionomer systems are parallel to the association behavior of small ions in water, cation affinity in crosslinked resins, and counterion binding of polyelectrolytes in water.  相似文献   

19.
The conformational response of an associating-type random coil macromolecule in solution was investigated utilizing an opposing jet device. This device, capable of generating a well-defined elongational flow field, is quite useful for probing intra- and intermolecular interactions of lightly sulfonated polystyrene ionomers in both nonpolar and polar solvent systems. Below a critical concentration in nonpolar media, such ionomers qualitatively follow trends predicted by dilute solution theory, although intramolecular ionic associations markedly increase the critical elongational shear rate. With further increases in concentration, the extensional behavior is determined by the initial formation of relatively strong intermolecular associations. At even higher polymer concentrations, a third regime is observed where the conformational relaxation process becomes even more facile. On the contrary, in a polar solvent, the conformational relaxation process is markedly enhanced (i.e., critical elongational shear rate is reduced) due to the polyelectrolyte effect, i.e., dissociation of a significant level of the counterions. The effect of this dissociation process influences the relaxation process over the entire concentration region examined. These findings are compared directly with solution rheology, where in low polarity solvents the reduced viscosity is markedly diminished by ion pair-type interactions, and in more polar environments the reduced viscosity is enhanced due to the dissociation of the counterions from the vicinity of the chain backbone.  相似文献   

20.
Composites of sulfonated polystyrene (PS-SSA) (0-8 mol % sulfonation) mixed with submicronic styrene-4 vinylpyridine (PS-4VP) (31 mol % 4VP content) microspheres were investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy, and dynamic mechanical spectroscopy at 1 Hz in the glass transition region. The resulting proton transfer reaction from the SSA to the 4VP units was confirmed by IR spectroscopy, and led to a significant increase in the post-Tg Young's modulus as well as a lengthening of the rubbery plateau. Surprisingly, the addition of sulfonated polystyrene microspheres to styrene-vinyl pyridine copolymers had no such effects, possibly because of steric factors. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号