首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cylindrical macrotricyclic ligands 1–3 yield inclusion complexes, [3]-cryptates, with various metal cations. NMR. studies indicate the successive formation of a mononuclear and a binuclear complex. The former is probably unsymmetrical undergoing fast intramolecular cation exchange; the latter is symmetrical, with a cation located on each macrocyclic subunit of the macrotricyclic system. A heteronuclear (Ag2+, Pb2+) complex has been observed. The stability constants of the mononuclear and binuclear alkali and alkaline-earth cation complexes of ligands 1–3 have been determined by potentiometric methods. The stabilities are comparable to those of the complexes of the isolated macrocyclic subunit 5b . The binuclear complexes are almost as stable as the mononuclear one even in highly charged species like for instance the complex of ligand 2 with two barium cations. Cylindrical macrotricyclic ligands are topologically well suited for the designed positioning of two metal cations in a binuclear inclusion complex.  相似文献   

2.
Macrocyclic Complexes of Lanthanides: Stability and Electrochemical Behaviour in Methanol and Propylene Carbonate The stabilities of the 1:1 complexes of the trivalent lanthanides with the diazapolyoxamacrocycles (2.1.) and (2.2.1.) in anhydrous methanol and propylene carbonate have been determined at 25°, by competitive potentiometric methods using H+ or Ag+ as auxiliary cations, with Et4NClO4 as supporting-electrolyte. Additional data are also reported for the crown ethers 15C5 and 18C6 in propylene carbonate. It is shown that the diazapolyoxamacrocycles are much stronger complexing agents for trivalent lanthanides than macrocyclic polyethers, and that the bicyclic (2.2.1.) cryptates are more stable than the monocyclic (2.1.) complexes. With increasing atomic number of the lanthanides, the stability increases with diazapolyoxamacrocycles and decreases with cyclic polyethers. The electrochemical reduction of the trivalent samarium and europium cryptates has been investigated by polarography on a dropping Hg-electrode, in water and methanol. In both solvating solvents, the +2 oxidation states of the cations are stabilized by complexation.  相似文献   

3.
The enthalpies and entropies of complexation of alkali and alkaline-earth metal cations by several macrobicyclic ligands have been obtained from calorimetric measurements and from the previously determined stability constants [2]. Both enthalpy and entropy changes play an important role in the stability and selectivity of the complexes. Particularly noteworthy are the large enthalpies and the negative entropies of complexation obtained for the alkali cation complexes (Na+, K+, Rb+ and Cs+ cryptates). The Sr2+ and Ba2+ as well as [Li+ ? 2.1.1]
  • 1 For use of the symbols see [2].
  • and [Na+ ? 2.2.1] cryptates are of the enthalpy dominant type with also a favourable entropy change. The Ca2+ and [Li+ ? 2.2.1] cryptates are entirely entropy stabilized with about zero heat of reaction. The high stability of the macrobicyclic complexes as compared to the macromonocylcic ones, the cryptate effect, is of enthalpic origin. The enthalpies of complexation display selectivity peaks, as do the stabilities, whereas the entropy changes do not. The high M2+/M+ selectivities found in terms of free energy, may be reversed when enthalpy is considered in view of the very different role played by the entropy term for M2+ and M+ cations. The enthalpies and entropies of ligation show that whereas the cryptate anions are similar in terms of entropy irrespective of which cation is included, the ligands, despite being more rigid than the hydration shell, are nevertheless able to adjust to some extent to the cation. This conclusion agrees with published X-rays data. The origin of the enthalpies and entropies of complexation is discussed in terms of structural features of the ligands and of solvation effects.  相似文献   

    4.
    Sythetic procedures have been deweloped for the preparation of sodium and lithium cryptates of the macrabicyclic ligands 1–11 containing pyridine, bipyridine, and biisoquinoline groups. They involve stepwise construction of the bicyclic system as will as direct macrobicyclisation procedures (Scheme 1) and give access to both symmetrical and dissymmetrical structures. Marked cation template effects have been found that facilitate the cyclisation processes. The ligands 1–11 were isolated as their cryptates with Na+ or Li+ cations.  相似文献   

    5.
    Polyaza-polyoxa macrobicyclic ligands: its synthesis and metal complexes. The synthesis of the polyaza-polyoxa macrobicyclic ligands 1–4 is described. They form complexes with a variety of metal cations, transition metal cations as well as alkali and alkaline-earth cations. These complexes may be formulated as cation inclusion complexes, cryptates, in which the cation is contained in the intramolecular cavity. The properties of the complexes are described. An especially interesting feature is that these ligands, polymines of macrobicyclic topology, provide a means of trapping transition metal cations inside a molecular cavity; thus they impose coordination geometries and may modify the spectral and redox properties of the cations.  相似文献   

    6.
    Nature and Stability of Some Metallic Complexes of Dinucleating Cryptands in Solution. I. A Polyazapolyoxa Cylindrical Macrotricycle and its Monocyclic Subunit pH-metry and UV spectrophotometry were used to study the complexing properties of the cylindrical macrotricycle, 1,7,13,19-tetraaza-4,16-dioxa-10,22,27,32-tetraoxatricyclo[17.5.5.5]tetratriacontane ( 1 ) and of its constitutive monocyclic subunit, 1,7-diaza-4,10-dioxacyclododecane ( 2 ) with some transition and heavy metal cations (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+), in aqueous medium 0.1M Et4NClO4, at 25°. The protonation constants of the ligands as well as the nature and the stabilities of the complexes formed in the pH-regions studied were determined. The tricycle 1 only formed dinuclear M2L complexes with Cu2+, Zn2+, and Ag+, accompanied in the latter case by a protonated mononuclear MLH species, and with Cu2+ and Zn2+ at high pH-values by dinuclear hydroxo complexes. Only mononuclear complexes were evidenced with the other cations, ML being accompanied either by protonated or hydroxy mononuclear species. The mononuclear complexes of 1 , when they existed, were more stable than the corresponding complexes of 2 , except for cobalt which formed complexes of comparable stability with both ligands. In the other cases (Cd2+, Pb2+, Ag+), the stability differences between the complexes of 1 and 2 increased with the size of the cation.  相似文献   

    7.
    Stability in aqueous solution of some complexes of heavy metals with diaza-polyoxamacrocyclic ligands Stability of metal complexes (Mn+ = Cu2+, Ni2+, Co2+, Zn2+, Pb2+, Ag+ and Cd2+) with five diaza-polyoxamacrocycles (L = [2.1.1], [2.2.1], [2.2.2], [2.1] and [2.2] ) have been determined at 25°, in 0.1 M Et4N+ClO aqueous solutions, by means of potentiometric titrations. All cations form MLn+ complexes; Cu2+ also forms the MHL(n+1)+ protonated species with both [2.2.1] and [2.1.1] ligands. The stability of these complexes has been discussed in terms of structure and by considering the ionic radii of the cations together with the radii of the macrocyclic cavities. Different behaviour is observed between some of these complexes and the well known alkali and alkaline-earth cryptates, partly due to the more covalent nature of bonds formed by the investigated cations and the donor sites of the ligands. The effect of the substitution of two oxygen by two sulfur atoms in the pentadentate ligand [2.1] on the stability of the complexes is reported.  相似文献   

    8.
    The electrochemical behaviour and cation recognition properties of two oxaferrocene cryptand ligands, 1,1′-[(1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diyl)diethoxy]-3,3′,4,4′-tetraphenylferrocene and 1,1′-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)diethoxy]-3,3′,4,4′-tetraphenylferrocene, have been characterized in acetonitrile in the presence of Ba2+ and Na+ by cyclic voltammetry, square wave voltammetry and a rotating disc electrode. The changes in the redox signals for the cryptates at varying concentrations of the target cations are used as a direct measure of the electronic coupling between the two units, leading to the conclusion that the cryptate formation process proceeds in multiple stages and the ligand offers several binding sites in the complex.  相似文献   

    9.
    Theoretical studies of the macrotricyclic tetramine hexaether (SC), its tetraprotonated form SC‐4H+, and the corresponding complexes X??SC‐4H+ (This expression represents the structural properties of the halide inclusion complex formed though the free ligand SC‐4H+ and the halide anion X?: the spherical halide anion X? is held by a tetrahedral array of +N? H ··· X? hydrogen bonds inside the intramolecular cavity of the tetraprotonated form SC‐4H+) of SC‐4H+ with the halide anions: F?, Cl?, and Br? have been performed using density functional theory (DFT) with B3LYP/6‐31G method implemented in the Gaussian 03 program package. The optimized geometric structures obtained from DFT calculations are used to perform Natural Bond Orbital (NBO) analysis. The three main types of hydrogen bonds +N? H ··· F?, +N? H ··· Cl?, and +N? H ··· Br? are investigated. The results indicate that hydrogen bonding interactions are dominant and the halide anions: F?, Cl?, and Br? offer lone pair electrons to the contacting σ* (N? H) antibond orbital of SC‐4H+. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the proton‐donor molecule. The intermolecular interaction energies are predicted by using B3LYP/6‐31G methods with basis set superposition error (BSSE) and zero‐point energy (ZPE) correction. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

    10.
    Nature and Stability of Some Metallic Complexes of Dinucleating Cryptands in Solution II. Polythiamacrotricycles and Related Monocyclic Subunits The stability constants of the Cu2+ and Ag+ complexes of the cylindrical macrotricycle 1a (1,7,13,19-tetraaza 4,16-dioxa 10,22,27,32-tetrathiatricyclo[17.5.5.5]tetratriacontane) have been determined by pH-metry, as well as those of the Cu2+, Co2+, Zn2+, Cd2+, Pb2+, and Ag+ complexes of the monocyclic subunit 2a (1,7-dimethyl-1,7-diaza 4,10-dithiacyclododecane), in aqueous solutions (NaClO4) at 25°. In the Cu(II) systems, equilibria were reached slowly, and the results established by pH-metry were confirmed by UV/VIS spectrophotometric studies. The tricycle 1a forms dinuclear cryptates with copper and silver, with overall stability constants log β210 (Cu2- 1a )4+ = 18.5, log β21-2 (Cu2- 1a (OH)2)2+ = 4.8, log β210(Ag2- 1a )2+ = 23.0. Ag+ also forms a mononuclear (Ag- 1a )+ complex, with log β110 = 13.1, but no mononuclear species were detected in the Cu- 1a system. The absorption spectra of the bis-Cu(II) complexes of 1a and 2a in aqueous medium, MeOH and propylene carbonate (PC) are given, as well as those, in MeOH and PC, of the bis-copper complexes of the related monocycles 3 and 4 (1,7-diaza-4,10,13-trithiacyclopentadecane and 1.10-diaza 4,7,13,16-tetrathiacyclooctadecane, respectively), and tricycle 5 with two benzyl groups in the lateral chains. The complexing properties of the polyoxa- and polythia macrotricycles (Parts I and II of this series) are compared to those of other bis-chelating ligands, the bicyclic bis-tren and the monocyclic bis-dien.  相似文献   

    11.
    The extent of isomerization of acyclic and cyclic gas phase radical cations of composition [C10H12]+˙ has been investigated by using collisionally activated dissociation spectroscopy. Both electron and charge exchange ionizaiton were employed to form the ions with various internal energies. The [C10H12]+˙ ions investigated consisted of ionized phenylbutenes, ring-substituted methyl derivatives of allylbenzene and phenylpropene, 1-methyl-2-isopropenylbenzene, benzylcyclopropane, phenylcyclobutane, tetralin and 1-methylindan. The 1-methylindan and tetralin radical cations are the most stable of the C10H12 isomeric radical ions. The [C10H12]+˙ formed from acyclic olefins having the double bond in conjugation with the aromatic ring retain the initial structure to a significant extent. However, ions derived from olefins with the double bond out of conjugation with the benzene ring preferentially cyclize to stable five- and six-membered cyclic ions. Ring opening of small-ring cyclic ions, such as ionized benzylcyclopropane and phenylcyclobutane, occurs, followed by ring closure to the tetralin radical cation.  相似文献   

    12.
    Theoretical studies of a diquinone calix[4]arene and its interactions with the cations Li+, Na+, K+ and Ag+ have been performed. Conformational features and cation-binding properties were evaluated with the restricted hybrid Becke three-parameter exchange functional method using the 6-31G(d) basis set and its relativistic effective core potentials. To model the effect of medium, the polarisable continuum model was also used. Four typical conformations of the parent diquinone calix[4]arene were studied. The calculated results show that the most stable conformers are 1,3-alternate and partial cone in the gas phase and in CH2Cl2 solution, respectively. The optimised geometric structures were used to perform natural bond orbital analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The calculated binding energy for cations (Li+, Na+, K+ and Ag+) is discussed. The calculated results indicate that cone complexes are the most stable.  相似文献   

    13.
    Reactions of various η6-arene-η5-cyclopentadienyliron or substituted cyclopentadienyliron cations with trimethyl, triethyl or triphenyl phosphite under either thermal or photochemical conditions all resulted in the replacement of the arene ligand with three phosphite ligands to give η5-tris(trimethyl, triethyl or triphenyl phosphite)-η5-cyclopentadienyliron or substituted cyclopentadienyliron cations. The yields of the phosphite complexes were higher from photolysis than from the analogous thermolysis. Photolysis of the η6-chlorobenzene-η5-cyclopentadienyliron cation (IX) carried out in the presence of a more basic or more electron-rich aromatic ligand resulted in the exchange of the chlorobenzene of IX with the more basic arene, thus providing synthetic routes to cyclopentadienyliron complexes that may be difficult to prepare by other means. New complexes synthesized in this way are the η6-2-phenylethyl tosylate-η5-cyclopentadienyliron cation and the CpFe+ complexes of thiophene, 2-methylthiophene, 3-methylthiophene and 2,5-dimethylthiophene.  相似文献   

    14.
    The sodium and europium cryptates of the new macrobicyclic ligands 2 and 3 incorporating the 2,2′-bipyri dine 1,1′-dioxide and 3,3′-biisoquinoline 2,2′-dioxide units, respectively, have been prepared. The EuIII complexes present characteristic 1H-NMR spectra, showing large shifts, and are strongly luminescent in aqueous solution. These markedly improved luminescent properties, compared to the europium cryptate of the parent macrobicyclic ligand 1 , may be ascribed at least in part to a better shielding of the bound cation by the N-oxide sites.  相似文献   

    15.
    Summary Thermally stable anionic tetracarbonylcobalt complexes containing triheterocarbenium ions, [Co(CO)4][cation]+, have been synthesized by the ion exchange reaction of [Co(CO)4]PPN+ with the corresponding carbenium ions. Similar molybdenum complexes containing cyclopentadienyl and carbonyl ligands were also prepared. The complexes were characterized by elemental analyses and by i.r. and n.m.r. spectroscopies. The ionic structures of the complexes are confirmed on the basis of their large electric conductivities.  相似文献   

    16.
    Stability in Methanol and Thermodynamic Transfer Properties of the Cryptates of some Transition Cations and Heavy Metals The nature and stability of the macrocyclic and macrobicyclic complexes of Ag+, Cd2+, and Pb2+ (Mn+) with 21, 22, 211, 221 and 222 in anhydrous methanol 0.05M in Et4N+ClO?4, at 25° (see Scheme) have been determined by potentiometry and spectrophotometry. Binuclear complexes M2L2n+ have been observed in all cases, besides the mononuclear MLn+ complexes. The macrobicyclic 1:1 complexes MLn+ exhibit an important ‘cryptate effect’ with Mn+=Ag+, Pb2+ and Cd2+, but not with Cu2+ and Zn2+; their stability is in all cases maximum with 221. The applicability to our results of the recent extrathermodynamic hypothesis involving MLn+ cryptates is examined.  相似文献   

    17.
    The electrochemical reduction of alkaline cryptates (222, M)+ has been studied on mercury electrode by normal pulse polarography, potentiostatic coulometry and cyclic voltammetry in propylene carbonate as solvent. The corresponding kinetic parameters have been calculated and compared with those obtained on solvated alkaline cations in the same medium. A more detailed study of the electrochemical reduction mechanism of the cryptate (222, K)+ shows that the primary product of the reduction is the unstable (222, Ko), and that the final stable products are the free ligand (222) and the amalgam Ko (Hg). The alkaline cations, when complexed by the same (222) ligand, exhibit close values of the polarographic diffusion coefficients. The specific polarographic behaviour of the cryptate (222, Cs)+ is described and its stability constant calculated in propylene carbonate. An analytical application of the electrochemical reduction of cryptates is also proposed.  相似文献   

    18.
    Cation fluxes from binary mixtures of either Na+, Cs+ or Sr2+ with other alkali metal cations, alkaline earth metal cations, and Pb2+ through a H2OCHCl3H2O bulk liquid membrane system containing one of several macrocyclic carriers have been determined Nitrate salts were used in all cases. The most selective transport of Na+ over all other cations studied was found with the carrier cryptand [2.2.1]. Selective transport of Na+ relative to Li+, Cs+ and the alkaline earth cations was found with cryptand [2.2.2B] and cryptand [2.2.2D]. The ligands 21-crown-7 and dibenzo-24-crown-8 showed selective transport of Cs+ over the second cation in all cases. Several macrocycles showed selectivity for Sr2+ over the second cation with the macrocycle 1,10-diaza-18-crown-6 showing the highest selectivity for this cation of all ligands studied. Relative fluxes from binary cation mixtures are rationalized in terms of macrocycle cavity size, donor atom type and ring substituents.  相似文献   

    19.
    A classical model of “molecular machine,” which acts as an ON–OFF switch for 2,2′‐bipyridyl‐3,3′‐15‐crown‐5 ( L ), has been theoretically studied. It is highly important to understand the mechanism of this switch. The alkali‐metal cations (Na+ and K+) and W(CO)4 fragment are introduced to coordinate with the different active sites of L , respectively. The density functional theory (DFT) method is used for understanding the stereochemical structural natures and thermodynamic properties of all the target molecules at B3LYP/6‐31G(d) and SDD (Stuttgart–Dresden) level, together with the corresponding effective core potential (ECP) for tungsten (W). The fully optimized geometries have been performed with real frequencies, which indicate the minima states. The nucleophilicity of L has been investigated by the Fukui functions. The natural bond orbital analysis is used to study the intermolecular charge‐transfer interactions and explore the origin of the internal forces of the molecular switch. In addition, the binding energies, enthalpies, Gibbs free energies, and the cation exchange energies have been studied for L , W(CO)4 L , and their corresponding complexes. The properties of the complexes displayed by in presence or absence of the W(CO)4 fragment are also analyzed. The calculated results of allosterism displayed by L are in a good agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

    20.
    Density functional theory calculation was carried out on cation‐π complexes formed by cations [M = H+, Li+, Na+, K+, Be2+, Mg2+, and Ca2+] and π systems of annelated benzene. The cation‐π bonding energy of Be2+ or Mg2+ with annelated benzene is very strong in comparison with the common cation‐π intermolecular interaction, and the bonding energies follow the order Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+. Similarly, the interaction energies follow the trend 1‐M < 2‐M < 3‐M for all the metal cations considered. These outcomes may be due to the weak interactions of the metal cations with C? H and the interactions of metal cations with π in addition to the nature of a metal cation. We have also investigated on all the possible substituted sites, and find that the metal ion tends to interact with all ring atoms while proton prefers to bind covalently to one of the ring carbons. The binding of metal cations with annelated benzenes has striking effect on nuclear magnetic resonance chemical shifts using the gauge independent atomic orbital method. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号