首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The formulation of the Langevin and the van Vleck components in terms of a Kirkwood—Vinti-like expression and bond/band parameters respectively enables us to obtain accurate values for the lattice magnetic susceptibility of intrinsic diamond-like semiconductors and to understand coherently the nature of its variation from compound to compound in terms of structural modifications of the electron-density distribution between the interacting atoms.  相似文献   

2.
Electric properties and pitting susceptibility of passive films formed on iron in 0.01 M Na2CrO4 solution was investigated by using Mott–Schottky analyses, electrochemical noise analyses and anodic polarization curve measurements. It was found that the passive films were very disordered n-type semiconductors with two level donors, shallow and deep. The donor concentrations decreased as the passive film was formed at more positive potentials. The passive films were susceptible to pitting in the solution containing 0.05 M chloride ions. The pitting susceptibility of the passive film was improved as the donor concentration in the passive film decreased.  相似文献   

3.
A new type of one-dimensional organic-inorganic hybrid [M(en)3]Pb2I6 [M = Mn (1), Fe (2), Zn (3), Ni (4); en = ethylenediamine] has been obtained and structurally characterized by X-ray crystallography, which opens a new approach to construct hybrid magnetic semiconductors. The results of optical absorption spectra and theoretical calculations for compounds 1-3 reveal a quantum confinement effect, and the variable-temperature magnetic susceptibility measurements for 1, 2, and 4 indicate ferromagnetic, antiferromagnetic, and paramagnetic behavior, respectively.  相似文献   

4.
To understand the importance of the band gap to the magnetic ordering in magnetic semiconductors, we have studied the effect of particle size on the ferromagnetic Curie temperature in semiconducting EuS. We have synthesized capped approximately 20 nm EuS nanoparticles using a single-source precursor, [Eu(S(2)CN(i)()Bu(2))(3)Phen] decomposed in trioctylphosphine. The nanoparticles have been characterized by X-ray powder diffraction, TEM, and magnetic susceptibility measurements as a function of temperature and field. The Curie temperature, based on Arrott plots, is depressed by 1-2 K from the bulk value.  相似文献   

5.
With the advent of silicon-based semiconductors, a plethora of previously unknown technologies became possible. The development of lightweight low-dimensional organic semiconductors followed soon after. However, the efficient charge/electron transfers enabled by the non-porous 3D structure of silicon is rather challenging to be realized by their (metal-)organic counterparts. Nevertheless, the demand for lighter, more efficient semiconductors is steadily increasing resulting in a growing interest in (metal-)organic semiconductors. These novel materials are faced with a variety of challenges originating from their chemical design, their packing and crystallinity. Although the effect of molecular design is quite well understood, the influence of dimensionality and the associated change in properties (porosity, packing, conjugation) is still an uncharted area in (metal-)organic semiconductors, yet highly important for their practical utilization. In this Minireview, an overview on the design and synthesis of porous semiconductors, with a particular emphasis on organic semiconductors, is presented and the influence of dimensionality is discussed.  相似文献   

6.
We discuss aspects of a developing microscopic theory of SHG from simple metal and semiconductor surfaces. For semiconductors calculations of the dynamical nonlinear susceptibility on the basis of realistic tight-binding parametrizations of the electronic Hamiltonian provide a practical scheme. In the resulting spectra the effect of the dangling bonds on SHG is clearly seen together with a strong decrease upon saturation with H atoms. In the metal case the adsorbate induced changes of the static nonlinear electron density can be calculated self-consistently by applying density functional theory to the jellium model. The second-order dipole moment determines the effect of adsorbates on the SHG intensity in the adiabatic limit. Quite general a correlation with the nature of the adsorbate expressed by its electronegativity and the characteristic charge transfer, adsorption dipole and polarizabilities in first and second order is found.  相似文献   

7.
Surface transfer doping relies on charge separation at interfaces, and represents a valuable tool for the controlled and nondestructive doping of nanostructured materials or organic semiconductors at the nanometer-scale. It cannot be easily achieved by the conventional implantation process with energetic ions. Surface transfer doping can effectively dope semiconductors and nanostructures at relatively low cost, thereby facilitating the development of organic and nanoelectronics. The aim of this review is to highlight recent advances of surface transfer doping of semiconductors. Special focus is given to the effective doping of diamond, epitaxial graphene thermally grown on SiC, and organic semiconductors. The doping mechanism of various semiconductors and their possible applications in nanoelectronic devices will be discussed, including the interfacial charge transfer and the energy level alignment mechanisms.  相似文献   

8.
Third and fifth harmonic generation of an IR (1.064 μm) pulsed laser has been produced in ablation plasmas of the wide bandgap semiconductors CdS and ZnS. The study of the temporal behaviour of the harmonic emission has revealed the presence of distinct compositional populations in these complex plasmas. Species ranging from atoms to nanometre-sized particles have been identified as emitters, and their nonlinear optical properties can be studied separately due to strongly differing temporal behaviour. At short distances from the target (<1 mm), atomic species are mostly responsible for harmonic generation at early times (<500 ns), while clusters and nanoaggregates mostly contribute at longer times (>1 μs). Harmonic generation thus emerges as a powerful and universal technique for ablation plasma diagnosis and as a tool to determine the nonlinear optical susceptibility of ejected clusters or nanoparticles.  相似文献   

9.
In the past decade, tremendous progress has been made in organic field-effect transistors (OFETs). Their real applications require further development of device performance. OFETs consist of organic semiconductors, dielectric layers, and electrodes. Organic semiconductors play a key role in determining the device characteristics. The properties of the organic semiconductors, such as molecular structure and packing, as well as molecular energy levels, can be properly controlled by molecular design. Therefore, we designed and synthesized a series of organic molecules. The synthesized organic semiconductors exhibit excellent field-effect properties due to strong intermolecular interactions and proper molecular energy levels. Meanwhile, the influence of the device fabrication process, organic semiconductor/dielectric layer interface, and organic layer/electrode contact on the device performance was investigated. A deep understanding of these factors is helpful to improve field-effect properties. Furthermore, single-crystal field-effect transistors are highlighted because the single-crystal-based FETs can provide an accurate conducting mechanism of organic semiconductors and higher device performance as compared with thin film FETs.  相似文献   

10.
Imide-functionalized π-conjugated polymer semiconductors have received a great deal of interest owing to their unique physicochemical properties and optoelectronic characteristics, including excellent solubility, highly planar backbones, widely tunable band gaps and energy levels of frontier molecular orbitals, and good film morphology. The organic electronics community has witnessed rapid expansion of the materials library and remarkable improvement in device performance recently. This review summarizes the development of imide-functionalized polymer semiconductors as well as their device performance in organic thin-film transistors and polymer solar cells, mainly achieved in the past three years. The materials mainly cover naphthalene diimide, perylene diimide, and bithiophene imide, and other imide-based polymer semiconductors are also discussed. The perspective offers our insights for developing new imide-functionalized building blocks and polymer semiconductors with optimized optoelectronic properties. We hope that this review will generate more research interest in the community to realize further improved device performance by developing new imide-functionalized polymer semiconductors.  相似文献   

11.
Low-field magnetic susceptibility of the diluted magnetic semiconductors Cd1?xMnxS and Zn1?xMnxS was measured between 4.2 and 30 K for the Mn concentration range 0.25 < x < 0.40. When x > 0.25, both of these ternary systems show a spin-glass transition in the above temperature range, as evidenced by a somewhat rounded cusp in the susceptibility and by the presence of irreversible effects. Because these materials are insulators at low temperatures, and the interactions between the Mn ions are only antiferromagnetic, the observed spin-glass behavior is attributed to frustration inherent in the hcp lattices of these compounds. The phase diagrams for the boundary of the paramagnetic and the spin-glass phases are presented for the two alloy systems, and the difference between the two phase diagrams is discussed.  相似文献   

12.
This digest aims to provide organic chemists with an overview of recent progress on n-type organic semiconductors for application in organic thin film transistors (OTFTs) with an emphasis on molecular design. Herein, we survey n-type organic semiconductors with field effect mobility of 1 cm2/Vs or higher in OTFTs after a brief introduction to the structure and operation of OTFTs and discussion of two key factors (frontier molecular orbitals and molecular packing) of organic semiconductors. On the basis of this survey, we finally reach conclusions on the current status of n-type organic semiconductors for OTFTs and provide an outlook for molecular design.  相似文献   

13.
One important feature of organic semiconductors is their solution processability, which allows researchers to tune their aggregation states in solution and solid states and to control the processing conditions to reach desirable electronic and optoelectronic properties. Temperature is one of the most important processing parameters of organic semiconductors and has been studied extensively particularly for those conjugated small- and macro- molecules with strong temperature-dependent aggregation properties. This minireview summarizes the temperature-induced aggregation behaviors of organic semiconductors in solution, during solution casting and upon thermal annealing post-treatment of solid-state thin films. The influences of different aggregation states on the optoelectronic properties, in particular the photovoltaic properties, are discussed. The conclusions in this work will provide a rational guide to precisely control the aggregation states of organic semiconductors to fabricate high-performance optoelectronic devices.  相似文献   

14.
This study describes a general approach for probing semiconductor-dielectric interfacial chemistry effects on organic field-effect transistor performance parameters using bilayer gate dielectrics. Organic semiconductors exhibiting p-/n-type or ambipolar majority charge transport are grown on six different bilayer dielectric structures consisting of various spin-coated polymers/HMDS on 300 nm SiO(2)/p(+)-Si, and are characterized by AFM, SEM, and WAXRD, followed by transistor electrical characterization. In the case of air-sensitive (generally high LUMO energy) n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters although the film morphologies and microstructures remain similar. In marked contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by the same dielectric surface modifications. Among the bilayer dielectric structures examined, nonpolar polystyrene coatings on SiO(2) having minimal gate leakage and surface roughness significantly enhance the mobilities of overlying air-sensitive n-type semiconductors to as high as approximately 2 cm(2)/(V s) for alpha,omega-diperfluorohexylcarbonylquaterthiophene polystyrene/SiO(2). Electron trapping due to silanol and carbonyl functionalities at the semiconductor-dielectric interface is identified as the principal origin of the mobility sensitivity to the various surface chemistries in the case of n-type semiconductors having high LUMO energies. Thiophene-based n-type semiconductors exhibiting similar film morphologies and microstructures on various bilayer gate dielectrics therefore provide an incisive means to probe TFT performance parameters versus semiconductor-dielectric interface relationships.  相似文献   

15.
Hydrogen-bonded organic semiconductors are extraordinarily stable organic solids forming stable, large crystallites with the ability to preserve favorable electrical properties upon bioconjugation. Lately, tremendous efforts have been made to use these bioconjugated semiconductors as platforms for stable multifunctional bioelectronics devices, yet the detailed characterization of bio-active binding sites (orientation, density, etc.) at the nanoscale has not been achieved yet. The presented work investigates the bioconjugation of epindolidione and quinacridone, two representative semiconductors, with respect to their exposed amine-functionalities. Relying on the biotin-avidin lock-and-key system and applying the atomic force microscopy (AFM) derivative topography and recognition (TREC) imaging, we used activated biotin to flag crystal-faces with exposed amine functional groups. Contrary to previous studies, biotin bonds were found to be stable towards removal by autolysis. The resolution strength and clear recognition capability makes TREC-AFM a valuable tool in the investigation of bio-conjugated, hydrogen-bonded semiconductors.  相似文献   

16.
In the search of remarkable anionic electroluminescent semiconductors to be applied in energy conversion devices such as Light Emitting Electrochemical Cells, we report the electronic, photophysical, and charge injection/transfer properties of a series of cyclometalated iridium(III) complexes through a DFT/TD‐DFT procedure. The proposed semiconductors involve bidentated ligands based on natural products (salicylic acid and boldine), and phenylpyridine and phenylpyrazole as the cyclometalating units. The proposed compounds emit in the range of 446 to 571 nm, where the boldine based compounds have red‐shifted emissions compared to their analogs with salicylic acid. Blue phosphors were obtained by the use of phenylpyrazole units; however, the ligand field is weak in these cases compared to the ligand field exerted by the phenylpyridine ligands. The latter allows the accessibility to the radiationless states for emitters below 495 nm as a result of the increased stability of the metal centered excited states; consequently, the luminescent quantum yield could be decreased. Conversely, the semiconductors with phenylpyridine units show a restricted accessibility to radiationless processes, which could result in emitters with a high luminescent quantum yield and low non‐radiative constants. Finally, the proposed anionic semiconductors show a better balance between hole/electron transfer rate compared to related cationic Ir(III) complexes; while, the easier hole‐electron injection is favored for semiconductors with salicylic acid and phenylpyridine units.  相似文献   

17.
This communication demonstrates a method of transferring unreacted low molecular weight (LMW) siloxane oligomers from freshly prepared "dry" PDMS stamps for patterning organic semiconductors and conducting polymers into functional devices via selective wetting. The semiconductors were patterned onto the modified surfaces via dip-coating with well-resolved feature sizes as small as 1 mum. Functional transistor arrays exhibited field-effect mobilities as high as 0.07 cm2/Vs. The proposed printing method eliminates the need to ink SAMs for fabricating patterns and results in a simple, fast, and highly reproducible method of patterning organic semiconductors from solution. The method herein also produced a flexible transistor composed of patterned PEDOT source-drain electrodes.  相似文献   

18.
半导体多相光催化降解废水有机污染物是一个备受环境科学工作者关注的领域。文章简要地阐述了半导体的光电化学特性、有机物的光催化降解机理及其动力学、半导体光催化剂的改性方法及原理等 ,并讨论了半导体光催化技术当前的发展方向  相似文献   

19.
Several advances were reported in the field of conjugated polymer semiconductors over the last year. Major breakthroughs relate to the achievement of high electroluminescence efficiency via exploitation of phosphorescence, of high efficiency photovoltaic cells, and of a better understanding of the properties of charged and neutral excitations in this class of unconventional semiconductors.  相似文献   

20.
The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号