首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The electrostatic molecular potential contour maps were calculated for carcinogenic 3-methylcholanthrene (3-MCA) and a number of its metabolites {3-MCA 7,8-oxide and 3-MCA 9,10-oxide; 3-MCA 7,8-dihydrodiols[several stereoisomers: A trans(equatorial, equatorial) and A cis(equatorial, axial)]; 3-MCA 9,10-dihydrodiol–7,8-epoxide A βββ and 3-MCA 9,10-dihydrodiol–7,8-epoxide A αβα}. The maps were generated from our ab initio MODPOT/VRDDO/MERGE wave functions calculated for these species. The results of these maps for 3-MCA [similarly to our results for the maps we generated for benzo(a)pyrene (BP)] show that these electrostatic molecular potential contour maps can be used to indicate favored positions of attack for electrophilic species, such as “electrophilic” oxygen to form an epoxide as well as for positive ion attack. The 3-MCA maps indicate the favored site for attack and the pathways. The maps around 3-MCA 9,10-oxide and around 3-MCA 9,10-dihydrodiol-7,8-epoxide indicate the directional preferences for proton assisted epoxide ring opening. The maps around the 3-MCA dihydrodiols indicate that while for certain stereoisomers the “electrophilic” oxygen will prefer to attack from below, for other isomers it will prefer to attack from above. This gives great insight into the stereochemical preference for formation of different 3-MCA 9,10-dihydrodiol–7,8-epoxides.  相似文献   

2.
Ab initio MODPOT /VRDDO calculations have been carried out on carcinogenic benzo(a)pyrene and its metabolites. The MODPOT /VRDDO method incorporates two very desirable options into our fast ab initio Gaussian programs: MODPOT —ab initio effective core model potentials—and a charge-conserving integral prescreening approximation which we named VRDDO (variable retention of diatomic differential overlap). For orbital energies and population analyses the MODPOT /VRDDO results agree to essentially three decimal places with completely ab initio calculations using the same valence atomic basis set. For this series of very closely related congeners a new MERGE technique was implemented that allows reuse of integrals of a common skeletal fragment. Since our program computes integrals efficiently by blocks, reusing information common to the block, it was more difficult to implement a MERGE technique than for integral programs which calculate the integrals one-byone. The MODPOT /VRDDO calculations were performed for benzo(a)pyrene (BP), BP oxides, BP dihydrodiols, and BP dihydrodiol epoxides. The metabolites investigated were BP-7,8-oxide, BP-4,5-oxide, BP-7,8-dihydrodiol [cis(e, a), cis(a, e), trans(e, e), and trans(a, a)], and BP-7,8-dihydrodiol-9,10-epoxide [β,β,β (the most stable), β,β,α; α,α,β, and α,α,α all derived from cis-BP-7,8-dihydrodiol and β,α,β; α,β,β and α,β,β derived from trans-BP-7,8-dihydrodiol]. Several different conformations were calculated for each of the BP dihydrodiols and BP dihydrodiol epoxides. Calculations were carried out for the opening of the C9—O—C10 epoxide ring both toward C9 and C10 for the, most stable β,β,β isomer of BP-7,8-dihydrodiol-9,10-epoxide. Opening the epoxide ring between C10 and O leads to a more stable intermediate than opening the epoxide ring between C9 and C10. However, there is no buildup of positive charge in C10 as has been postulated by some cancer researchers, but rather the C10 becomes slightly more negative. Nor is there a buildup of negative charge on the O atom. rather it becomes slightly less negative. As the epoxide ring is opened further than 90° for the O—C9—C10 or O—C10—C9 angles, there appears to be a possible mixing of configurations that is being investigated further.  相似文献   

3.
Reference completely ab initio 6–3G and nonempirical 3G/MODPOT (ab initio effective core model potential) LCAO -MO -SCF calculations (using the same valence atomic orbital basis) were performed for a series of boron hydrides (B4H10, B5H9, B5H11, and B6H10) and a test 3G/MODPOT + VRDDO (variable retention of diatomic differential overlap for charge conserving integral prescreening) calculation were also performed for B5H9, B6H10, and B10H14. The agreement between the ab initio 6–3G and the corresponding 3G/MODPOT calculations was excellent for valence orbital energies, gross atomic populations, and dipole moments. The results also compared favorably to previous ab initio minimum STO basis results of Lipscomb and coworkers. The 3G/MODPOT + VRDDO calculations verified that for such spatially compact molecules (such as boron hydrides, which are fragments of polyhedra), the VRDDO procedure does not result in a noticeable savings in computer time for molecules of the size and shape of B5H9 and B6H10, in contrast to the savings previously realized for organic molecules of comparable atomic size. However, the agreement in calculational results between the 3G/MODPOT and the 3G/MODPOT +VRDDO results was still as extremely close as it had been for the organic molecules. 3G/MODPOT calculations were also carried out for B8H12, B9H15, B10H14, B10H14?2, 1,2-C2B4H6, and 1,6-C2B4H6 and the results compared to the previous minimum STO basis results. For B10H14, the 3G/MODPOT +VRDDO method led to savings in computer time of 28% over the 3G/MODPOT method itself. The agreement of the 3G/MODPOT results with available experimental photoelectron spectral data for B5H9 and 1,6-C2B4H6 was as good as that of the previous ab initio minimum STO basis calculations.  相似文献   

4.
The transport of C6H5O? (or similarly charged moieties) through a lipoidal membrane may possibly be facilitated by forming complexes with the neutral compound. Thus, theoretical studies were performed on the model [C6H5OH ?OC6H5]? molecular complex to obtain some information concerning the possible molecular and electronic structure of such complexes. Ab initio MODPOT /VRDDO SCF calculations were carried out on the neutral-anion dimer [C6H5OH ?OC6H5] to optimize the equilibrium geometry. Electrostatic molecular potential contour maps have been generated from the ab initio MODPOT /VRDDO results in the molecular plane and in the plane perpendicular to the molecular plane and intersecting the hydrogen bond O ?H? O. Difference maps have also been generated showing the change of potential on complex formation. There is a decrease of electrostatic interactions of the phenoxide anion upon complex formation with the neutral phenol. Counterpoise corrections for basis set size could not be made since calculation of the phenoxide anions in the basis set of the phenol plus the phenoxide anion led to an excited state for the phenoxide anion. This behavior is somewhat similar to that occurring in the stabilization method for excited states of negative ions as the size of the basis set is increased.  相似文献   

5.
Quantum chemical results will be presented on drugs, carcinogens, teratogens, and endogenous biomolecules using our new nonempirical ab initio MODPOT /VRDDO method, which incorporates as options to our ab initio LCAO -MO -SCF /CI programs ab initio effective core model potentials (MODPOT ) permitting one to calculate only the valence electrons explicitly yet accurately and an integral prescreening technique (VRDDO , variable retention of diatomic differential overlap) especially effective for spatially extended molecules. For molecules of the size of those of interest the MODPOT /VRDDO calculations run an order-of-magnitude faster than with our own fast ab initio programs and still retain accuracy to the third decimal place for the valence electron properties. We have also just implemented a new efficient MERGE technique which allows us to reuse integrals from a common skeletal fragment and only to have to recalculate those for a new atom or group or a change in its position. Examples will be presented of the use of this technique on a carcinogenic polycyclic aromatic hydrocarbon and its metabolites. The pKa's, oil-water partition, and drug distribution coefficients as a sensitive function of pH have been measured for a number of drugs as well as for relevant endogenous biomolecules. The pH dependence of the lipophilicities of such molecules has profound implication on appropriate use of such data in QSAR studies.  相似文献   

6.
Ab initio MODPOT /VRDDO /MERGE calculations have been carried out for all the different position isomers of nitrocubane from mononitrocubane through octanitrocubane for a perfect symmetrical cubic cubane skeleton and for mononitrocubane through septanitrocubane for the almost cubic experimentally determined cubane skeleton. These calculations were carried out with our own rapid efficient ab initio programs which also incorporate a number of desirable computational strategies for calculations on large molecules. The skeletal total overlap population of the cubane skeleton (a theoretical index we showed years ago to be sensitive and predictive of stability of energetic molecular frameworks) indicates that successive nitration seems to increase the stability of the cubane skeleton. Successive nitration also seems to increase the total overlap population of the C? NO2 bond. There are subtle differences depending on the exact positional isomer for a constant number of nitro groups—but the overall trend is definite. We have also generated electrostatic molecular potential contour (EMPC ) maps around these nitrocubanes. These maps are indicative of preferred positions of electrophilic and nucleophilic attack as a function of the number of nitro groups or their positions. These EMPC maps can also indicate, to a first approximation, a limit on how close these molecules may be able to approach each other in a crystal.  相似文献   

7.
Quantum chemical ab initio MODPOT /VRDDO calculations have been carried out on the following aminonitrobenzenes for which crystal structures had been determined experimentally: 4-nitroaniline; N,N-dimethyl-p-nitroaniline; 2,4,6-trinitroaniline; 1,3-diamino-2,4,6-trinitrobenzene (DATB—Form I); 1,3,5-triamino-2,4,6-trinitrobenzene (TATB); 2,3,4,6-tetranitroaniline; N-methyl-N,2,4,6-tetranitroaniline (Tetryl); and N-(β,β,β-trifluoroethyl)-N,2,4,6-tetranitroaniline. These quantum chemical calculations were performed on the molecules in their conformations as found in their crystal structures. The calculations were carried out with our own ab initio programs which also incorporate as options several desirable features for calculations on large molecules: ab initio effective core model potentials (MODPOT) which enable calculations of valence electrons only explicitly, yet accurately, and a charge conserving integral prescreening evaluation (which we named VRDDO-variable retention of diatomic differential overlap) especially effective for spatially extended molecules. Aminonitrobenzenes are especially interesting since there are inherent intramolecular ring distortions and deviations from planarity and intramolecular hydrogen bonds as well as intermolecular hydrogen bonds causing further deviations from planarity. The theoretical indices resulting from the quantum chemical calculations are relevant to a number of properties and behavioral characteristics of these molecules, both intramolecular and intermolecular. The charges on the atoms [from the gross atomic populations (GAP 's)] are needed for calculation of the atomic multipole–atomic multipole electrostatic contributions (a dominant factor) to the intermolecular interaction energies. These electrostatic interaction energies are part of the input necessary for calculations on the crystal packing and densities of these molecules. These GAP 's are also of value in interpreting the experimental photoelectron and ESCA spectra of these molecules. The total overlap populations (TOP 's) between atoms are related to the inherent bond strengths and can serve as a quantitative replacement for the old empirical bond length-bond order-bond energy relationship still used by explosives chemists to identify the “target bonds” (the weakest bonds). The TOP 's are of considerable value in predicting and tracing initiation and subsequent steps of explosive phenomena. The molecular orbital energies of the lowest unoccupied orbitals are of interest since nitroexplosives have been implicated in testicular toxicity and the initial metabolic activation appears to proceed through a one-electron reduction of the nitroexplosive.  相似文献   

8.
We have explored two areas of approximately rigorous calculations for computing nonempirical wave functions for heavy and/or large molecules orders of magnitude faster than with conventional ab-initio methods but with the same chemical accuracy. First, we have developed and used a series of programs (starting from our new fast sets of ab-initio Gaussian SCF and SCF -CI programs) incorporating ab-initio effective core model potentials (MOD -POT ) which allow one to treat only the valence electrons explicitly, plus a charge conserving integral prescreening, which cuts down significantly on the number of integrals that have to be calculated, stored, or processed for a large molecule. We have named this latter procedure VRDDO (variable retention of diatomic differential overlap). With these MODPOT and MODPOT /VRDDO methods we have explored a variety of small, medium, and large systems ranging from electron affinities of atoms through to molecules of biological interest and large boron hydrides. The results compared to ab-initio SCF or SCF /CI calcuations are very good, usually within 0.001 to 0.002 a.u. for orbital energies and gross atomic populations (GAPS ) and even better along potential energy curves. Secondly, we have explored the use of the MS -Xα method for less conventional molecules and properties than those for which it is customarily employed.  相似文献   

9.
We have carried out a computational study of the reactive properties of chlorooxirane, the metabolically produced epoxide of vinyl chloride that is believed to be a direct-acting carcinogenic form of this molecule. An ab initio SCF-MO procedure (GAUSSIAN 70) was used to compute the energy requirements for stretching the C? Cl and both C? O bonds (SN 1 reactivity) and to determine the course of the epoxide's possible SN 2 reactions with ammonia, taken as a model for nucleophilic sites on DNA. The epoxide was assumed to be protonated; both the oxygen- and chloro-protonated forms were considered. At each step along the various reaction pathways, the structure of the system was reoptimized. For the oxygen-protonated epoxide, the C1? O bond has a significantly lower energy barrier to stretching than does the C2? O. (The carbon bearing the chlorine is designated C1.) However, both are very much higher than that of the C? Cl bond in the chloro-protonated form, confirming our earlier finding of the relative weakness of this bond. In the SN 2 processes involving ammonia, intermediate complexes are formed with both carbons of the oxygen-protonated epoxide, the C2-complex being the more stable. However, the most stable ammonia complex occurs at C1 of the chloro-protonated epoxide. Our calculated results, both the energies and also the geometry changes, allow us to propose two possible mechanisms for the formation of the 7-N-(2-oxoethyl) derivative of guanine that has been observed to be the major in vivo DNA alkylation product of vinyl chloride and has been suggested as possibly being responsible for its carcinogenicity. One of these mechanisms is SN 1 and starts with the chloro-protonated epoxide; the other is SN 2 and involves the oxygen-protonated form.  相似文献   

10.
The title compound, C7H6O2, forms infinite chains where the mol­ecules are hydrogen bonded via the hydroxyl and aldehyde groups, with an O?O distance of 2.719 (3) Å. Interchain interactions are weak. The geometry of the ring differs from the ideal form due to the effect of the substituents. Abinitio (Hartree–Fock self‐consistent field–molecular orbital and density functional theory) calculations for the free mol­ecule reproduce well the observed small distortions of the ring. In the crystal, the geometry deviates from the ideal Cs symmetry of the free mol­ecule, as given by the ab initio calculations. The aldehyde and hydroxyl groups are twisted around the single bonds which join them to the ring as a result of the intermolecular hydrogen‐bond interactions. These are also responsible for an elongation of the hydroxy C—OH bond compared with that calculated for the free mol­ecule.  相似文献   

11.
The title compound, C21H28O4, has a 4‐acetoxy substituent positioned on the steroid α face. The six‐membered ring A assumes a conformation intermediate between 1α,2β‐half chair and 1α‐sofa. A long Csp3—Csp3 bond is observed in ring B and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular‐orbital Hartree–Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C—H...O hydrogen bonds.  相似文献   

12.
In the title compounds, C21H30O4, (I), and C23H34O4, (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis‐(5β,10β)‐fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5β,6β‐epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree–Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.  相似文献   

13.
The stereoisomers of 7‐phenyl‐1‐oxa‐4‐thia­spiro­[4.5]­decan‐7‐ol, C14H18O2S, have the same stereochemistry at the C atom bearing an OH group, i.e. axial OH and equatorial phenyl groups. However, the acetal S and O atoms are axial and equatorial, respectively, in one isomer and reversed in the second. Furthermore, the crystals of one isomer are composed of hydrogen‐bonded mol­ecules involving the hydroxyl H atom and the O atom of the five‐membered heterocyclic ring, with an O?O distance of 2.962 (3) Å, forming a polymeric chain along the b axis. The asymmetric unit of the other isomer is composed of two mol­ecules, wherein hydroxyl H atoms and the O atoms of the five‐membered heterocyclic rings display intramolecular O—H?O hydrogen bonds with O?O separations of 2.820 (2) and 2.834 (2) Å.  相似文献   

14.
15.
The reaction of C3H8+O(3P)→C3H7+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Møller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3H8+O(3P)→i-C3H7+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogen-abstraction from propane involving reaction channel competitions is helpful for the under-standing of propane combustion.  相似文献   

16.
The crystal structure of N‐methyl‐4‐piperidyl 2,4‐di­nitro­benzoate, C13H15N3O6, (I), at 130 (2) K reveals that, in the solid state, the mol­ecule exists in the equatorial conformation, (Ieq). Thus, the through‐bond interaction present in the axial conformation, (Iax), is not strong enough to overcome the syn–diaxial interactions between the axial methyl substituent and the axial H atoms on the two piperidyl ring C atoms either side of the ester‐linked ring C atom. The carboxyl­ate group in (I) is orthogonal to the aromatic ring, in contrast with other 2,4‐di­nitro­benzoates, which are coplanar. The piperidyl–ester C—O bond distance is 1.467 (3) Å, which is actually shorter than other equatorial cyclo­hexyl–ester C—O distances. This shorter piperidyl–ester C—O bond distance is due to the reduced electron demand of the orthogonal ester group.  相似文献   

17.
The mol­ecules of the title compound, C7H5BrO2, form zigzag chains running along the b axis and are stacked in layers perpendicular to the a axis. Intermolecular bonding occurs through hydrogen bonds linking the hydroxyl and carbonyl groups, with an O?O distance of 2.804 (4) Å. The Br atom deviates significantly from the plane of the ring and the aldehyde group is twisted by 7.1 (5)° around the Csp2—Caryl bond. The geometry of the mol­ecule in the crystal is compared to that given by ab initio quantum mechanical calculations for the isolated mol­ecule, using a molecular orbital Hartree–Fock method and density functional theory.  相似文献   

18.
The 3 5Cl NQR spectra and ab initioquantum-chemical calculations show that chlorophosphoranes C6F5PCl4 and (C6F5)2PCl3 have a trigonal bipyramidal structure with the equatorial location of the pentafluorophenyl groups. This conclusion agrees with the rule of location of substituents in the molecule taking into account their electronegativity and refutes the existing concepts concerning the structure of the above mentioned chlorophosphoranes.  相似文献   

19.
In the title compound, C16H17NO3·H2O, the pyrrole ring is distorted slightly from ideal C2v symmetry. Three strong hydrogen bonds link the substituted pyrrole and water mol­ecules to form infinite chains, in which the hydrogen bonds form rings and chain patterns. Two intermolecular C—H?π interactions maintain the internal cohesion between these chains. The molecular structure differs slightly from that of the isolated mol­ecule calculated by ab initio quantum‐mechanical calculations. In the latter model, the non‐H substituent atoms share the plane of the pyrrole ring, except for the phenyl group, which lies almost perpendicular to this plane.  相似文献   

20.
The title compound, alternatively called 24‐nor‐5β‐chol‐22‐ene‐3β,7α,12α‐triyl triformate, C26H38O6, has a cis junction between two of the six‐membered rings. All three of the six‐membered rings have chair conformations that are slightly flattened and the five‐membered ring has a 13β,14α‐half‐chair conformation. The 3β, 7α and 12α ring substituents are axial and the 17β group is equatorial. The 3β‐formyl­oxy group is involved in one weak intermol­ecular C—H⋯O bond, which links the mol­ecules into dimers in a head‐to‐head fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号