首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探讨了以离子液体作为液相色谱流动相添加剂,对植物激素赤霉素GA3、生长素IAA和脱落酸ABA的分离的影响,以及离子液体的烷烃链长度,阴离子及离子液体的浓度对分离的影响。结果表明:咪唑阳离子和植物激素通过静电作用而保留;植物激素本身的pKa值影响其保留因子,pKa值增大,离子液体浓度对植物激素保留因子影响增大;另外随[BMIM]对应的阴离子电负性的减小,植物激素的保留因子明显地增大;同时植物激素的空间位阻也影响其分离。  相似文献   

2.
A method for separation and purification of plant hormones auxin and abscisic acid based on mixed mode reversed-phase anion-exchange solid phase extraction and two-dimensional HPLC was developed. Two-dimensional HPLC in "heart cutting" mode was very efficient in the purification of these two hormones. Its purification power is high enough to allow reliable on-line quantification of both hormones even with non-selective detectors.  相似文献   

3.
ATP-binding cassette (ABC) transporters have been implicated in a multitude of biological pathways. In plants, some ABC transporters are involved in the polar transport of the plant hormone auxin and the gravitropic response. We previously identified Gravacin as a potent inhibitor of gravitropism in Arabidopsis thaliana. We demonstrate that P-glycoprotein19 (PGP19) is a target for Gravacin and participates in its inhibition of gravitropism. Gravacin inhibited the auxin transport activity of PGP19 and PGP19-PIN complexes. Furthermore, we identified E1174 as an important residue for PGP19 activity and its ability to form active transport complexes with PIN1. Gravacin is an auxin transport inhibitor that inhibits PGPs, particularly PGP19, which can be used to further dissect the role of PGP19 without the inhibition of other auxin transporters, namely PIN proteins.  相似文献   

4.
Almost 80 years after the discovery of the first plant hormone, auxin, a few years ago a new class of plant hormones, the strigolactones, was discovered. These molecules have unprecedented biological activity in a number of highly important biological processes in plants but also outside the plant in the rhizosphere, the layer of soil surrounding the roots of plants and teeming with life. The exploitation of this amazing biological activity is not without challenges: the synthesis of strigolactones is complicated and designing the desired activity a difficult task. This minireview describes the current state of knowledge about the strigolactones and how synthetic analogs can be developed that can potentially contribute to the development of a sustainable agriculture.  相似文献   

5.
Plant hormones, and especially auxins, are low molecular weight compounds highly involved in the control of plant growth and development. Auxins are also broadly used in horticulture, as part of vegetative plant propagation protocols, allowing the cloning of genotypes of interest. Over the years, large efforts have been put in the development of more sensitive and precise methods of analysis and quantification of plant hormone levels in plant tissues. Although analytical techniques have evolved, and new methods have been implemented, sample preparation is still the limiting step of auxin analysis. In this review, the current methods of auxin analysis are discussed. Sample preparation procedures, including extraction, purification and derivatization, are reviewed and compared. The different analytical techniques, ranging from chromatographic and mass spectrometry methods to immunoassays and electrokinetic methods, as well as other types of detection are also discussed. Considering that auxin analysis mirrors the evolution in analytical chemistry, the number of publications describing new and/or improved methods is always increasing and we considered appropriate to update the available information. For that reason, this article aims to review the current advances in auxin analysis, and thus only reports from the past 15 years will be covered.  相似文献   

6.
油菜素甾醇激素分析的研究进展   总被引:1,自引:0,他引:1  
潘加亮  谭微  李攻科  胡玉玲 《色谱》2011,29(2):105-110
油菜素甾醇是一类具有高生理活性的甾体激素,在植物中含量低,所在基体复杂。目前,要实现该激素的高效分离和准确定量分析仍存在很大的困难。本文综述了油菜素甾醇样品前处理方法及其分析检测技术的研究进展。共引用文献49篇。  相似文献   

7.
In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.  相似文献   

8.
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.  相似文献   

9.
Theoretical and computational investigations of the excess charge distribution (ECD) in molecular complexes have attracted considerable attention as ECD is closely related to electronic properties of organic semiconductors, such as the efficiency of photoinduced charge separation in organic solar cells and charge transport in DNA and proteins. In this paper, we analyze the ECD in several representative models on the basis of ab initio and DFT calculations. We consider how changes in the reorganization energy, electronic coupling and charge transfer energy affect the ECD in the systems. In particular, we compare ECD in π stacks of polycyclic aromatic hydrocarbons and DNA nucleobases. While the π interaction between subunits in the systems is similar in both cases, ECD is quite different: the excess charge is found to be completely delocalized over the hydrocarbon stacks but strongly confined to a single nucleobase in DNA stacks. We also discuss the effects of conformational fluctuations on ECD in the stacks. Finally, ECD in amino acids and its dependence on the conformational changes are briefly considered.  相似文献   

10.
11.
This tutorial review primarily illustrates rate theories for charge transfer and separation in organic molecules for solar cells. Starting from the Fermi's golden rule for weak electronic coupling, we display the microcanonical and canonical rates, as well as the relationship with the Marcus formula. The fluctuation effect of bridges on the rate is further emphasized. Then, several rate approaches beyond the perturbation limit are revealed. Finally, we discuss the electronic structure theory for calculations of the electronic coupling and reorganization energy that are two key parameters in charge transfer, and show several applications.  相似文献   

12.
In the present paper, photoinduced processes in the dyad molecules of pentathiophene (5T) and perylene-3,4:9,10-bis(dicarboximide) (PDI) with a flexible alkyl linker (propyl or hexyl) were investigated by using femtosecond laser flash spectroscopy in various solvents. Since absorption of 5T covers the wavelength region where absorption of PDI has minima and fluorescence of 5T overlaps with absorption of PDI, combination of 5T and PDI is favorable to achieve light energy harvesting as well as efficient electron transfer. When the sample was excited at the PDI moiety of the dyad, charge separation occurred almost quantitatively even in nonpolar solvent as well as in polar solvents. When the 5T moiety of the dyad was excited, efficient energy transfer to the PDI moiety from which charge separation occurred was confirmed, indicating that 5T acts as an antenna of the charge separation system, like a photosynthesis system of a plant. On the basis of Forster and Marcus theories and the estimated energy and electron-transfer rates, it was indicated that these dyads tend to take a folded structure in all solvents investigated.  相似文献   

13.
For many years, the plant hormones auxin, cytokinin, ethylene, gibberellin, abscisic acid, brassinosteroid, jasmonic acid, and salicylic acid have been extensively studied as key regulators of plant growth and development. However, recent biochemical and genetic analyses have revealed that secretory peptides are also responsible for intercellular signaling in plants and regulate various events including wound response, cell division control, and pollen self-incompatibility. We discovered two natural CLAVATA3 (CLV3)/ESR-related (CLE) peptides: tracheary elements differentiation inhibitory factor (TDIF) and CLV3, which are dodecapeptides with two hydroxyproline residues that regulate vascular development and meristem formation, respectively. This discovery enabled us to predict the chemical form of CLE gene products. In the Arabidopsis genome, there are 31 CLE genes that correspond to 26 CLE peptides. The application of all 26 chemically synthesized peptides to plants revealed the existence of distinctive functional groups. From these results, we discuss the functions of CLE peptides in plant development and plant-parasite interactions.  相似文献   

14.
Charge reversal of the planar electrical double layer is studied by means of a well known integral equation theory. By a numerical analysis, a diagram is constructed with the onset points of charge reversal in the space of the fundamental variables of the system. Within this diagram, two regimes of charge reversal are identified, which are referred to as oscillatory and nonoscillatory. We found that these two regimes can be distinguished through a simple formula. Furthermore, a symmetry between electrostatic and size correlations in charge reversal is exhibited. Agreement of our results with other theories and molecular simulations data is discussed.  相似文献   

15.
Most people are familiar with the sight of a young seedling bending towards a window or the brightest source of light to which it is exposed. This directional growth response is known as phototropism, which is caused by a lateral growth-promoting auxin in the bending organ (Cholodny-Went theory, cited in high school textbook). Recently, however, Bruinsma et al., Weiler et al., and Hasegawa et al. independently found that the shaded half did not contain more auxin than the illuminated one. Instead it was found that the even distribution of auxin was accompanied by a lateral gradient of growth inhibiting substances during phototropic curvature (Bruinsma-Hasegawa theory). We have isolated some photo-induced growth inhibitory substances related to phototropism, benzoxazolinones from light-grown maize shoots (Zea mays L.), raphanusanins from radish hypocotyl (Raphanus sativus var. hortensis f. gigantissimus M.), indolyacetonitrile from light-grown shoots (Brassica oleacea L.), 8-epixanthatin from sunflower hypocotyl (Helianthus annus L.), and quite recently uridine from oat coleoptile (Avena sativa L.). Chemical analyses have shown phototropic stimulations to cause curvature by inducing a local unequal distribution of growth-inhibiting substances that antagonize auxin in its cell-elongating activity. Finally, a model is presented for further studies on phototropism.  相似文献   

16.
Phytohormones act at relatively low concentrations as major regulatory factors of plant growth and development, and cross talk of phytohormones is currently of great interest throughout the plant science community. To meet this demand, a method that is capable of simultaneously analyzing diverse plant hormones is essential. This paper introduces a high-performance liquid chromatographic separation technique coupled with sensitive and selective ion trap mass spectrometry to simultaneously determine 24 or more acidic and alkaline phytohormones, including auxin, cis- and trans-abscisic acid, 11 cytokinins, and 10 gibberellins, in a single injection of sample. A binary solid-phase extraction using Oasis MCX cartridges for cations and Oasis MAX cartridges for anions was used to prepurify more than 24 acidic and alkaline phytohormones from a single plant extract. The method showed good linearity for all 24 phytohormones with R 2 values ranging from 0.9903 to 0.9997. Limits of detection for most of the phytohormones were in the femtomole range with some extending into the sub-femtomole range. This method was applied to hundreds of plant samples comprising different tissues from various plants, including herbaceous, woody climbing, and woody plants to demonstrate feasibility and to validate the methodology.  相似文献   

17.
《Polymer Photochemistry》1983,3(4):279-294
Literature data about enzymatic proteins and synthetic polymers containing azo or spirobenzopyran photochromic compounds are discussed.In enzymes, the catalytic activity can be photomodulated by means of the attached photochromic molecules as well as by microenvironmental changes when they are embedded in photoresponsive membranes. In synthetic polymers, large light-induced conformational changes can be obtained in solution, the most pronounced effects being observed in systems with labile fold structures.The mechanisms responsible for the conformational variations can be the changes in intramolecular and solvational interactions brought about both by the structural change of the chromophore after photoisomerisation and by the charge separation.The data about enzymes, when brought into correlation with those about model compounds, support the hypothesis that the above mechanisms are also operative in the photomodulation of enzyme activity.  相似文献   

18.
A couple of corrole–perylene carboximide dyads ( C2‐PIa and C2‐PIx ) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge‐separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties. High spectroscopic energy levels of the perylene carboximide derivatives (PIs) allow a fast charge separation to be maintained in competition with an energy‐transfer process from the PI to the corrole unit. Yields and lifetimes of charge separation in toluene are, respectively, 75 % and 2.5 μs for C2‐PIa and 65 % and 24 ns for C2‐PIx . The results and the effect of solvent polarity are discussed in the framework of current energy‐ and electron‐transfer theories.  相似文献   

19.
The photophysical properties of a bicyclohexylidene (1DA) and a bicyclohexyl (2DA) substituted with an anilino electron donor and a dicyanoethylene electron acceptor have been studied. Quenching of local donor emission is observed for these compounds as well as quenching of the "pseudo-local" acceptor emission. Transient absorption spectra show dialkylanilino-type radical-cation and dicyanoethylene-type radical-anion absorptions. These results show that intramolecular charge separation takes place in 1DA and 2DA. This was corroborated by time-resolved microwave conductivity measurements from which large excited-state dipole moments were found for both 1DA and 2DA. Time-resolved fluorescence spectroscopy revealed that in the charge-separated state in cyclohexane for 2DA, molecular folding takes place on a nanosecond timescale. For 1DA in cyclohexane, either charge separation takes place in a (fully) folded conformation or very rapid (subnanosecond timescale) folding takes place subsequent to charge separation. In addition to this difference in conformational behavior, the presence of the exocyclic double bond between the cyclohexyl-type rings results in efficient quenching of the anilino donor triplet state and acceleration of the charge recombination rate by a factor of 20.  相似文献   

20.
This perspective considers two theories we recently proposed to perform quantum embedding calculations for chemical systems: domain-separated density functional theory (DS-DFT) and locally coupled open subsystems (LCOS). The development includes both the fundamentals of each theory as well as potential applications, some technical aspects, and related challenges. DS-DFT is suited to study intramolecular effects, where one can apply a high level of theory (based on DFT or wave function theory) to a region of interest inside a molecule or solid and lower level theory elsewhere, with smooth switching between the regions. LCOS, in contrast, is a fragment-based embedding, which offers computational advantages to study intermolecular behavior such as electron hopping, spin-environment interaction, and charge-transfer excitations. However, both theories can exchange roles when appropriate. In addition, these theories allow for control of computational scaling of their algorithms. We explore paths to determine the charge-transfer operator used in LCOS, and suggest an auxiliary energy minimization that can provide a practical estimate to this operator. We also briefly discuss how to implement density fitting techniques in domain separation, and how domain separation can be used for pure wave function-based embedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号