首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl- and Alkylidenephosphines. XVI. (Dimethylaminomethylidene)- and (Diphenylmethylidene) phosphines Alkyl- or arylbis(trimethylsilyl)phosphines 1 (R = mesityl, C9H11 a ; (CH3)3C b ; C6H5 c ; CH3 d ) react only very slowly with dimethylformamide 2 and benzophenone 4. After repeated addition of small amounts of solid sodium hydroxide, however, the reaction-time is shortened from several months to a few days. The reactions between 1 a or 1 b and 2 yield the (dimethylaminomethylidene)phosphines 3 a and 3 b ; from 1 a and 4 mesityl-(diphenylmethylidene)phosphine 5 a is obtained. The formation of the thermally labile phosphines 3 d and 5 c is proved by NMR spectroscopy; these compounds dimerize very fast to give 2,4-bis(dimethylamino)-1,3-dimethyl- 10 d and 1,2,2,3,4, 4-hexaphenyl-1,3-diphosphetane 15 c. Similarly the lithium trimethylsilylphosphides 6 a , 6 c and 6 e (R = (CH3)3Si) react with 2 or 4 to form 3 a and 5 c as well as (diphenylmethylidene)-trimethyl-silylphosphine 5 e .  相似文献   

2.
Acyl- and Alkylidenephosphines. XVII. Triacetylphosphine from Tris(trimethylsilyl)-phosphine Tris(trimethylsilyl)phosphine reacts at 0°C with excess acetyl chloride in cyclopentane to form chlorotrimethylsilane and triacetylphosphine 3a . In contrast to the corresponding 2,2-dimethylpropionyl derivate (Z)- 5b the intermediate compounds (E)- and (Z)-acetyl-[1-(trimethylsiloxy)ethylidene]phosphine 5a are thermally instable. They could not be isolated in a pure state, but were characterized by NMR spectroscopic methods only. The isomers differ scarcely in their chemical shift values, but very much in their coupling constants. If the solution is cooled unsufficiently diacetyl-[1-(trimethylsiloxy)vinyl]phosphine 7 and the keto-enol-tautomers of diacetylphosphine K-/E- 2a are formed to a greater extend. 1H-{31P}-INDOR experiments allowed the correlation between 1H- and 31P-NMR resonances and hence the correct identification of the phosphines formed. Within days the compounds 2a and 7 also react at +20°C with an excess of acyl halide to give triacetylphosphine 3a .  相似文献   

3.
Acyl and alkylidene phosphines. XII. Syntheses and properties of 2,2-dimethylpropionylphosphine and of some derivatives At ?25°C bis(trimethylsilyl)phosphine 1b and 2,2-dimethylpropionyl chloride form (2,2-dimethylpropionyl)trimethylsilylphosphine 2b . As this compound is thermally more stable than similar acyltrimethylsilylphosphines, it might be treated at ?55°C with methyllithium to form the correspondig lithium phosphide 2d ; after the addition of chlorotrimethylsilane [2,2-dimethyl-1-(trimethylsiloxy)propylidene]-trimethylsilylphosphine 3c is obtained. At +20°C 2b rearranges to the E and Z isomer of [2,2-dimethyl-1-(trimethylsiloxy)propylidene]phosphine 3b . The NMR data of E- 3b and Z- 3b differ mostly in the coupling constants. Kept in the diffuse daylight for several days 3b dimerizes to form 2,4-di(tert.butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetane 10 . In solution 10 is unstable and decomposes again to a mixture of the E und Z isomer of 3b . Reacting 3b or 3c with alcoholes all trimethylsilyl groups are replaced by hydrogen atoms and unstable 2,2-dimethylpropionylphosphane 4b is formed. Lithium(2,2-dimethylpropionyl)phosphide 4d , synthesized at ?60°C from 4b and methyllithium, crystallizes with one molecule 1,2-dimethoxyethane per formula unit and is dimeric in benzene. As shown by the NMR data 4d has the structure of an alkylidene-phosphine with the lithium atom bound to oxygen. At ?50°C 4d and chlorotrimethylsilane react to form 3b .  相似文献   

4.
Acyl- and Alkylidenephosphines. XXXIII Lithoxy-methylidenephosphine · DME and -methylidynephosphine · 2DME — Syntheses and Structures Lithium dihydrogenphosphide · DME(1) and ethyl formate in a molar ratio of 2 : 1 react in 1,2-dimethoxyethane to give liquid lithium formylphosphide · DME in 87% yield. Since lithium complexed by the chelate ligand DME is bound to the oxygen atom of the carbonyl group, the compound has to be considered as lithoxy-methylidenephosphine · DME ( 1 ). According to x-ray structure analyses of crystalline derivatives [5, 6], molecules of this type dimerize forming a four membered Li O Li O ring. Characteristic nmr-data show the presence of an E- and Z-isomer (δ1 H  P: 3.87 and 4.49; 1 J HP: 150.8 and 136.5; δ1 H  C: 11.4 and 10.05; 2 J HP: 6.1 and 81.2; 3 J HH: 6.6 and 13.9; δ31 P : 38.6 and 8.8; δ13 C P: 225.0 and 215.4 ppm; 1 J CP: 41.2 and 65.0 cps); in 1,2-dimethoxyethane an E : Z ratio of 1.86 : 1 is found. In a similar reaction of lithium bis (trimethylsilyl)phosphide · 1.6 THF(1) with excess dimethyl carbonate lithoxy-methylidynephosphine · 2DME ( 2 ) is formed via an up to now poorly understood mechanism. The compound can also be prepared from lithium dihydrogenphosphide · DME; it crystallizes in the monoclinic space group P21/n {a = 880.6(2); b = 1296.6(2); c = 1267.4(2) pm; β = 96.07(2)° at −100 ± 3°C; Z = 4}. An x-ray structure analysis (Rw = 0.052) gives a P C distance of 155.5 pm which is typical for a triple bond. The C O bond length of 119.8 pm, however, is extremely short compared to the standard value of a single bond (139 pm). Angles of 178.5° and 170.7° at the carbon and oxygen correspond with the expected linear configuration of the PC O Li backbone of the molecule, Characteristic nmr-data are as follow: δ31 P -384.2; δ13 C 166.6ppm; 1Jcp 41.5 cps.  相似文献   

5.
Acyl-and Alkylidenephosphines. XXVI. 2, 4-Bis (phenylimino)-1, 3-diphosphetanes from Thiocarbamoyl- and Carbamoyltrimethylsilylphosphines . Bis(trimethylsilyl)phosphines R? P[? Si(CH3)3]2 1 (R = H3C a, H5C6 b, (H3C)3C e, H11C9 d) and phenyl isothiocyanate give insertion compounds which were identified as [CN-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphines 3 ? 2 in solution as well as in the solid state [2]. In the presence of small amounts of solid sodium hydroxide the phenyl derivative 3 ? 2b eliminates bis(trimethylsilyl) sulfane, whereas the tert-butyl 3 ? 2c and the mesityl compound 3 ? 2d show the same reaction even without a catalyst. The unstable [(phenylimino)methylidene]phosphines 6 formed first, dimerize rapidly to give 2, 4-bis(phenylimino)-1,3-diphosphetanes 7 which in solution exist as mixtures of the E and Z isomers. Via a NaOH-catalyzed elimination of hexamethyldisiloxane these cyclic phosphines 7 can also be obtained from the adducts of phenyl isocyanate and bis(trimethylsilyl)phosphines 1. Taking the thermally sufficiently stable tert-butyl derivative 7 c as an example, the temperature dependence of n.m.r. spectra is discussed in detail.  相似文献   

6.
Acyl- and Alkylidenephosphines. XXXII. Di-cyclohexoyl- and Diadamant-1-oylphosphine – Keto-Enol Tautomerism and Structure Lithium dihydrogenphosphide · DME (1) [12] and cyclo-hexoyl or adamant-1-oyl chloride react in a molar ratio of 3:2 to give lithium di-cyclo-hexoylphosphide · DME and the corresponding diadamant-1-oylphosphide.2THF (1) resp. Treatment of these two compounds with 85% tetrafluoroboric acid. diethylether adduct yields di-cyclo-hexoyl- ( 1b ) and diadamant-1-oylphosphine ( 1c ). In nmr spectroscopic studies 1b over a range of 203 to 343 K, a strong temperature dependence of the keto-enol equilibrium is found; thermodynamic data characteristic for the formation of the enol tautomer (ΔH0 = ?4.3 kJ. mol?1; ΔS0 = ?9.2 J. mol?1. K (?1) are compared of 1,3-diketones. The enol tautomer of diadamant-1-oylphosphine ( E-1c ) as obtained from a benzene solution in thin colourless plates, crystallizes in the monoclinic space group P21/c {a = 722.2(2); b = 1085.5(4); c = 2434.8(5) pm; ß = 96.43(2)° at –100 ± 3°C; Z = 4}. An X- ray structure analysis (Rw = 0.033) shows bond lengths and angles to be almost identical within the enolic system (P? C 179/180; C? O 130/129; C? C(adamant-1-yl) 152/153 pm; C? P? C 99°; P? C? O 124°/124°; P? C? C 120°/120°; C? C? O 116°/116°. The geometry of the very strong, but probably asymmetric O‥H‥O bridge is discussed (O? H 120/130, O‥O 245 pm).  相似文献   

7.
Acyl- and Alkylidenephosphines. XXVIII. Synthesis and Structure of 1,3-Dibenzyl- and 1,3-Diethyl-2,4-bis(phenylimino)-1,3-diphosphetane Catalyzed by small amounts of solid sodium hydroxide, the adducts 1a and 1b formed from benzyl- or ethylbis(trimethylsilyl)phosphine and phenylisocyanate, react at +20°C slowly to give hexamethldisiloxane and oligomeric [(phenylimino)methylidene]phosphines. In different solvents the benzyl compound was found to exist only as a mixture of [N,N′-(E)/(Z)]-isomeric 2,4-bis-(phenylimino)-1,3-diphosphetanes 2a with their alkyl groups at the phosphorus atoms in trans position, whereas in case of the ethyl derivative 2b a second pair of [N,N′-(E)/(Z)]-isomeric dimers with their substituents in cis position and two trimeric forms ( 3b and 4b ) could be detected in cyclopentane. [N,N′-(E)]-1r,3t-dibenzyl- ( 2a ) and [N,N′-(E)]-1r,3t-diethyl-2,4-bis(phenylimino)-1,3-diphosphetane 2b isolated from 1,2-dimethoxyethane or cyclopentane, crystallize in the monoclinic space group P21/c or P21/n, resp., with following dimensions of the unit cell determined at temperatures of measurement of +20 ± 3°C/?130 ± 3°C: a = 2145.4(1)/569.3(1); b = 568.1(2)/719.1(2); c = 1960.2(2)/2042.6(4) pm; β 99.43(1)°/95.03(2)°; Z = (2+2) and 2, resp. X-ray structure determinations (Rw = 0.034/0.041) show both molecules to be centrosymmetric. Characteristic rounded bond lengths (pm) and angles (°) are: endocyclic P? C 185/184; C? P? C 82/81; P? C? P 98/99; exocyclic P? C 186/184; C?N l27/127; C?N? C 121/11.  相似文献   

8.
Acyl- and Alkylidenephosphines. XXIII. Synthesis and Structure of [Bis(trimethylsilylsulfano)methylidene]phosphines Analogous to the phenyl derivative 1a [2] tert-butyl- 1b , mesityl- 1c and methylbis-(trimethylsilyl)phosphine 1 d react with carbon disulfide to give the corresponding [bis(trimethylsilylsulfano)methylidene]phosphines 4 . Only in case of the mesitylphosphine 1 c the intermediate compounds 2 and 3 could be detected by n.m.r. spectroscopic methods; thermally unstable [bis(trimethylsilylsulfano)methylidene]methylphosphine 4 d dimerizes rapidly [1]. [Bis(trimethylsilylsulfano)methylidene]phenylphosphine 4 a crystallizes in the monoclinic centrosymmetric space group P21/c with following dimensions of the unit cell determined at ?95 ± 3°C: a = 1386.4(8); b = 1036.0(7); c = 1281.7(8) pm; ß = 101.23(4)°; Z = 4. An X-ray structure determination (R = 0.032) proves the constitution of this compound as already derived from its nmr spectra. Characteristic bond lengths and angles are: P?C 170; P? C(phenyl) 183; C? S 176; S? Si 219 pm; C? P?C 107; P?C? S 124 and 120; S? C? S 116 and C? S? Si 111°.  相似文献   

9.
Acyl and Alkylidenephosphines. XlX. Molecular and Crystal Structure of 2,4-Bis (dimethyl-amino) ?1,3-diphenyl-l, 3-diphosphetane 2,4-Bis(dimethylamino)-1,3-diphenyl-1,3-diphosphetane 2a which is isolated as a byproduct in the synthesis of (E)-(dimethylamino)methylidene-phenylphosphine 1a crystallizes in the monoclinic space group P21/c. The dimensions of the unit cell determined at ?65 ± 5°C are: a = 1 004(1); b = 1 018(3); c = 1 873(2) pm; β = 105.15(8)°; Z = 4. As it is shown by a low temperature X-ray structure determination (Rg = 3.5%) the phenyl groups are placed above and the dimethylamino groups below the folded 1,3-diphosphetane ring; the molecule with its differently twisted substituents, however, deviates considerably from point symmetry mm2. The dihedral angle between the P1? C1n? P2 planes (n = 1 or 2) is found to be 153°. The relatively long Pn? C1n bond distances (187 to 191 pm) indicate a strained ring system; in solution 2a decomposes to some extent and forms monomeric 1a again. Further characteristic average bond distances and angles are: Pn? C4n (phenyl) 184; C? N 146 pm; P1? C1n? P2 93°; C11? Pn? C12 84° and Pn? C1n? Nn 116°.  相似文献   

10.
Acyl- and Alkylidenephosphines. XXVII. Molecular and Crystal Structure of Methyl-[(N-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphine . Methyl[(N-phenyl, N-trimethylsilyl)thiocarbamoyl]trimethylsilylphosphine 1a formed via an addition of methylbis(trimethylsilyl)phosphine to phenyl isothiocyanate [1], crystallizes in the monoclinic centrosymmetric space group P21/n with following dimensions of the unit cell determined at a temperature of measurement of ?80±3°C: a=1041.2(4);b=1706.9(12);c=1001.1(6)pm; β=106.41(4)°; Z = 4. An X-ray structure determination (Rw = 0.039) confirms the constitution of the compound as already derived from its nmr spectra. One trimethylsilyl group is bound to the phosphorus atom, whereas the other is connected with the sp2-hybridized nitrogen atom. Characteristic rounded bond lenghts and angles are: P? Si 231, P? CH3 184, P? C(S) 187, C?S 167, N? C(S) 137, and N? Si 181 pm as well as P? C? S 122°, P? C? N 117°, and S? C? N 121°.  相似文献   

11.
Acyl- and Alkylidenephosphines. XXII. Synthesis and Structure of 1, 3-Dimethyl-2,2,4,4-tetrakis(trimethylsilylsulfano)-1,3-diphosphetane At ?30°C methylbis(trimethylsilyl)phosphine reacts with carbon disulfide to give a red adduct first which rearranges to [bis(trimethylsilylsulfano)methylidene]methylphosphine 1a . In contrast to the thermally stable phenyl derivative 1b [2], this compound with its insufficiently shielded P?C group dimerizes fast with increasing temperature. 1,3-Dimethyl-2,2,4,4-tetrakis(trimethylsilylsulfano)-1,3-diphosphetane 2a formed by this reaction, crystallizes in the triclinic space group P1 with following dimensions of the unit cell, determined at a temperature of measurement of ?80 ± 3°C: a = 1024.7(3); b = 1360.2(5); c = 1326.3(6)pm; α = 117.85(4); ß = 111.05(3); γ = 72.09(3)°; Z = 2. Due to ring folding at the P1? P2 axis of 149.1°, the molecule shows pseudosymmetry Cs. Characteristic averaged bond lengths and angles obtained at an Rw-value of 0.030, are: P? C(endocyclic) 188 and 191; P? CH3 184; C? S 183; S? Si 216 pm; C? P? CH3 105; P? C? S 113; S? C? S 114; C? S? Si 108; P? C? P 90 and C? P? C 86°.  相似文献   

12.
Das Gemisch aus dem E- und Z-Isomeren des [2,2-Dimethyl-1-(trimethylsiloxy)propyliden]phosphans ist bei 20°C im diffusen Tageslicht nicht beständig; im Laufe einiger Wochen scheidet sich das Dimere 2,4-Di(tert.butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetan 1 ab. Die Verbindung kristallisiert triklin in der Raumgruppe P1 mit a = 1044,5(3); b = 647,8(2); c = 883,8(2) pm; α = 100,39(2); β = 102,84(2); γ = 93,70(2)°; Z = 1. Wie die Röntgenstrukturanalyse (R = 3,7%) zeigt, besitzt das Molekül als kristallographisches Symmetrieelement ein Inversionszentrum. Die mit 190,3 und 189,5 pm langen P? C? Abstände weisen auf eine beträchtliche Ringspannung hin; in Lösung zerfällt das Diphosphetan wieder leicht in das E- und Z-isomere Monomere. Weitere charakteristische Bindungsabstände und -winkel sind: C1? O 140,8; Si? O 163,5 pm sowie P? C1? P' 92,7; C1? P? C1′ 87,3; C1? O? Si 146,2° Acyl and Alkylidene Phosphines. XIII. Molecular and Crystal Structure of 2,4-Di(tert.-butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetane Kept at 20°C in diffuse daylight the mixture of the E and Z isomer of [2,2-dimethyl-1-(trimethylsiloxy)propylidene]phosphine is not stable; within several weeks the dimer 2,4-di(tert.-butyl)-2,4-bis(trimethylsiloxy)-1,3-diphosphetane 1 precipitates. The compound crystallizes triclinic in the space group P1 with a = 1044.5(3); b = 647.8(2); c = 883.8(2) pm; α = 100.39(2); β = 102.84(2); γ = 93.70(2)°; Z = 1. As shown by an x-ray structure determination (R = 3.7%) the molecule has a centre of symmetry. The long P? C distances (189.5 and 190.3 pm) indicate a strained ring-system; in solution the diphosphetane decomposes again to form the E and Z isomeric monomer. Further characteristic bond distances and angles are: C1? O 140.8; Si? O 163.5 pm as well as P? C1? P' 92.7; C1? P? C1′ 87.3; C1? O? Si 146.2°.  相似文献   

13.
The reaction of 2-picolylketones (1 a, b) with reactive trichlorophenyl malonates (2 a–f) leads to 1-acyl-2-hydroxy-4-quinoliziones (3 a–i) which can be easily deacylated by boiling hydrochloric acid yielding 4-quinolizinones4 a–f. The 3-acetyl-2-hydroxy-4-quinolizinones6 and8 are obtained byKlosa-Ziegler acylation of4 a and7, respectively. The reaction of the acetyl compound3 a with acetic anhydride yields the 2-pyrone derivative9, whereas the propionyl derivative3 g yields the 4-pyrone10 under the same conditions. Nitration of3 e does not give the 1-nitro derivative12 but rather the 1,3-dinitro compound11.  相似文献   

14.
Acyl- and Alkylidenearsines VII Synthesis and Structure of Tetrakis(2,2-dimethylpropionyl)diarsine Lithium dihydrogenarsenide and 2,2-dimethylpropionyl chloride in a molar ratio of 3:2 react at ?40 to ?50°C in tetrahydrofuran or 1,2-dimethoxyethane to give the corresponding etherate of lithium bis(2,2-dimethylpropionyl)arsenide ( 2a ). Treatment of these solutions with stoichiometric amounts of 85% tetrafluoroboric acid · diethylether adduct yields yelloworange tetrakis(2,2-dimethylpropionyl)diarsine ( 5 ) in 64 or 62% yield resp., but not the expected bis (2,2-dimethylpropionyl)arsine ( 4a ). The very air-sensitive compound crystallizes in the monoclinic space group P21/n {?100 ± 3° C; a = 1224.6(3); b = 1419.7(3); c = 1333.1(3) pm; β = 96.22(2)°; Z = 4}. According to the X-ray structure analysis (Rw = 0.036) the molecule shows synclinal conformation; the two diacylarsyl-subunits are twisted against one another by an angle of 86°. As in another acylarsine [1] the As? C distances (203 to 205 pm) were found to be significantly longer then the standard value of 196 pm. Further characteristic bond lengths and angles are: As– 242; C? O 120 to 121 pm; As? As? C 88 to 107°; As? C? O 118 to 122°  相似文献   

15.
Acyl- and Alkylidenephosphines. XXV. Molecular and Crystal Structure of 1,2-Di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilylsulfano-1λ5, 2λ3-diphosphet-3-ene The title compound 1 formed in a nearly quantitative yield by decomposition of tert-butyl(N,N-dimethylthiocarbamoyl)trimethylsilylphosphine, crystallizes in the orthorhombic space group P212121 with {a = 1067.3(1); b = 1077.1(1); c = 1924.6(5) pm; Z = 4} at +20°C. An X-ray structure determination (RG = 0.038) shows two tert-butyl groups at a four- (P1) and a three-coordinate phosphorus atom (P2) to be placed on different sides of the four membered ring. Characteristic bond lengths as well as the angles at the atoms P1, P2, C3, and C4 inside the ring have already been given above.  相似文献   

16.
Acyl- and Alkylidenephosphines. XXIV. (N,N-Dimethylthiocarbamoyl)trimethylsilyl-phosphines and 1.2-Di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilylsulfano-1λ5, 2λ3-diphosphet-3-ene In contrast to bis(trimethylsilyl)phosphines R? P[? Si(CH3)3]2 1 {R ? H3C a ; (H3C)3C b ; H5H6 c ; H11C9 d ; (H3C)3Si e }, the more nucleophilic lithium trimethylsilylphosphides 4 react with N,N-dimethylthiocarbamoyl chloride already at ?78°C to give (N,N-dimethylthiocarbamoyl)trimethylsilylphosphines 2 . Working up the reaction, a dismutation of the mesityl derivative 2d is observed, whereas the tert-butyl compound 2b dissolved in toluene, eliminates dimethyl(trimethylsilyl)amine to form 1,2-di(tert-butyl)-3-dimethylamino-1-thio-4-trimethylsilyl-sulfano- 1λ5, 2λ3-diphosphet-3-ene 6b , nearly quantitatively within several days at +20°C.  相似文献   

17.
18.
Acyl- and Alkylidenearsines. VI. Comparative Studies on the Structures of Bis(2,2-di-methylpropionyl)phenylarsine and -phosphine . Bis(2,2-dimethylpropionyl)phenylarsine 1a [19] and -phosphine 1b [20] prepared from the corresponding bis(trimethylsilyl) derivative and 2,2-dimethylpropionyl chloride, crystallize in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?70 ± 3°C/?73 ± 3°C: a = 1449.3(7)/1468.3(3); b = 1050.0(5)/985.9(2); c = 1138.5(4)/1159.4(4) pm; β = 108.27(3)/105.61(3)°; Z = 4. X-ray structure determinations (Rw = 0.044/0.044) reveal distances of 205 and 191 pm between the pnicogen and the carbon atom of the carbonyl group which, as in similar trifluoromethyl compounds [2], are definitely elongated with respect to standard values of 194 and 183 pm. Further characteristic mean bond lengths and angles are: As? C(phenyl) 194; P? C(phenyl) 184; C?O 119/121; C(O)? C 153/154; C(O)? As? C(O) 91; C(O)? P? C(O) 95; As? C? O 120; P? C? O 120; As? C(O)? C 117 and P? C(O)? C 118°.  相似文献   

19.
20.
NaIr(CO)4 reacts with Cl3CL (L = CH3, C6H5), Cl3SiCH3 or Cl3GeCH3 to form the novel cluster compounds (CO)9Ir3CCH3 (I), (CO)9Ir3CC6H5 (II), (CO)9IrSi- CH3 (III) and (CO)9Ir3GeCH3 (IV), respectively. Comparison of the IR spectra in the ν(CO) region with those of the structurally well established methylidyne clusters (CO)9Co3CL shows equivalent symmetry conditions. The analytical and IR data enable possible structures to be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号