首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
内锥流量计流出系数预测方法研究   总被引:4,自引:1,他引:3  
采用标准k-ε模型、RNG(Renormalization Group)k-ε模型、Realizable k-ε模型和Reynolds应力方程模型 RSM(Reynolds Stress Model) 对100 mm口径6种结构的内锥流量计内流场进行了数值模拟.在等效直径比β值为0.65的三种结构内锥流量计流出系数的仿真计算中,四种湍流模型计算结果与物理实验结果误差的平均值分别为4.19%,2.84%,2.88%和-0.822%;对β值为0.85的情况,各模型计算误差的平均值分别为11.8%,9.62%,9.30%和4.76%.研究结果表明,RSM模型在6种结构内锥流量计流出系数的预测中,计算精度较高,表现出了较好的性能,优于三种k-ε涡粘模型,更适于内锥流量计流场数值模拟与流出系数的预测.  相似文献   

3.
Turbulent flow in a rectangular duct with a sharp 180‐degree turn is difficult to predict numerically because the flow behavior is influenced by several types of forces, including centrifugal force, pressure‐driven force, and shear stress generated by anisotropic turbulence. In particular, this type of flow is characterized by a large‐scale separated flow, and it is difficult to predict the reattachment point of a separated flow. Numerical analysis has been performed for a turbulent flow in a rectangular duct with a sharp 180‐degree turn using the algebraic Reynolds stress model. A boundary‐fitted coordinate system is introduced as a method for coordinate transformation to set the boundary conditions next to complicated shapes. The calculated results are compared with the experimental data, as measured by a laser‐Doppler anemometer, in order to examine the validity of the proposed numerical method and turbulent model. In addition, the possibility of improving the wall function method in the separated flow region is examined by replacing the log‐law velocity profile for a smooth wall with that for a rough wall. The analysis results indicated that the proposed algebraic Reynolds stress model can be used to reasonably predict the turbulent flow in a rectangular duct with a sharp 180‐degree turn. In particular, the calculated reattachment point of a separated flow, which is difficult to predict in a turbulent flow, agrees well with the experimental results. In addition, the calculation results suggest that the wall function method using the log‐law velocity profile for a rough wall over a separated flow region has some potential for improving the prediction accuracy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
An application of the depth-integrated k-? turbulence model is presented for separated flow in a wide, shallow, rectangular channel with an abrupt expansion in width. The well-known numerical problems associated with the use of upwind and central finite differences for convection are overcome by the adoption of the spatially third-order accurate QUICK finite difference technique. Results show that modification of the depth-integrated k-? turbulence closure model for streamline curvature leads to significant improvement in the agreement between model predictions and experimental measurements.  相似文献   

5.
Large eddy simulation of natural convection in a confined square cavity is described. The use of a complex compressible code with an artificial acoustic stiffness correction method, allows the use of higher time steps for a faster time and statistical convergence. We consider a broadly studied experimental case, consisting of a natural convective flow in a confined square cavity, with vertical walls heated at different rates (active walls), set at Ra = 1.58 × 109. Turbulent boundary layers developing on the active walls and a vertical stable stratification characterize the mean flow. It is shown here that the results of this study match the experimental results reported in literature; for instance, mean velocity results. Although results for rms velocity fluctuations are barely over-predicted, the peak region is properly represented, while the greatest disagreements are found in the turbulent heat flow rate (velocity–temperature correlations). Turbulent structures were identified using different visualization methods and statistical studies. The authors found that the boundary layers on the active walls almost reach the fully turbulent regime, tending toward the laminar regime along the horizontal walls.  相似文献   

6.
7.
By choosing a PVC slice to simulate flexible vegetation, we carried out experiments in an open channel with submerged flexible vegetation. A 3D acoustic Doppler velocimeter (micro ADV) was used to measure local flow velocities and Reynolds stress. The results show that hydraulic characteristics in non-vegetation and vegetation layers are totally different. In a region above the vegetation, Reynolds stress distribution is linear, and the measured velocity profile is a classical logarithmic one. Based on the concept of new-riverbed, the river compression parameter representing the impact of vegetation on river is given, and a new assumption of mixing length expression is made. The formula for time-averaged velocity derived from the expression requires less parameters and simple calculation, and is useful in applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号