首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of M2Cl4(PR3)4 derivatives (M  Mo, W and PR3  PEt3, PBu3n) with CO at atmospheric pressure in toluene at 70°C to afford M(CO)3(PR3)2Cl2 and trans-M(CO)4(PR3)2 are reported.  相似文献   

2.
The restricted rotation of the olefin ligands L = dimethyl maleate and dimethyl fumarate in complexes of the type C5H5Mn(CO)2L and C5H5Cr(CO)-(NO)L, respectively, has been investigated on the basis of their temperature-dependent 1H NMR spectra. The olefinic ligand is arranged preferably in a position where the CC double bond is parallel to the plane of the cyclopentadienyl ring. The possible stereoisomers are discussed using this model. The 1H NMR spectra of C5H5Cr(CO)(NO)(trans-CH3OOCCHCHCOOCH3) provide direct evidence that the configuration (R or S) at the metal is stable up to 120°C, and that the restricted motion of the olefin is exclusively rotation around the metal—olefin bond. The activation barriers of the olefin rotation are found to be appreciably lower in the C5H5Mn(CO)2L complexes (ΔG(TC) 11–12 kcal mol?1) than in the isoelectric C5H5Cr(CO)(NO)L compounds (ΔG(TC) 15–20 kcal mol?1).  相似文献   

3.
Chloride-bridged tungsten tricarbonylmetalates [(OC)3W(Cl)3W(CO)3]3?, obtainable in high yields from tungsten hexacarbonyl and tetraalkylammonium chlorides, with allyl halides give π-allylhalogenotungsten dicarbonyls. With phosphines reductive elimination of allylhalide yields bis- or tris-(phosphine)-tungsten-dicarbonyls L2W(PR3)2(CO)2, LW(PR3)P3(CO)2 (L = CH3CN). Substitution reactions of L with various ligands under mild conditions are described. IR and electronic spectra of more than twenty new compouonds are discussed and compared with corresponding compounds of molybdenum.  相似文献   

4.
The photochemistry of the tris-substituted clusters Ru3(CO)9(PR3)3 (R=Ph or OMe) with no added ligands, with CO, C2H4, alkynes and H2 is compared and contrasted with results obtained for analogous thermal reactions. Photolysis of a CH2Cl2 solution of Ru3(CO)9(PPh3)3 leads to the metallated complex HRu3(CO)8(PPh3)2(PPh2C6H4). In CCl4, Ru(CO)3(PR3)Cl2 is formed on photolysis of Ru3(CO)9(PR3)3. Photolysis of CO saturated solutions of Ru3(CO)9(PR3)3 leads to Ru(CO)4(PR3). C2H4 saturated solutions of Ru3(CO)9(PR3)3 generate the novel Ru(CO)3(PR3)(2-C2H4) complexes upon photolysis. With C2H2, photolysis of solutions of Ru3(CO)9(PR3)3 leads to the novel complexes Ru(CO)3(PR3)(2-C2H2). Substituted alkyne complexes have been prepared. Thermolysis of Ru3(CO)9(PR3)3 with HCCPh leads to the novel acetylide clusters HRu3(CO)6(PR3)3(3-2-C2Ph). With PhC CPh, only Ru3(CO)9{P(OMe)3}3 reacts, yielding the novel alkyne cluster Ru3(CO)6{P(OMe)3}3(3-2-C2Ph2). With H2, photolysis of CH2Cl2 solutions of Ru3(CO)9(PR3)3 leads to H2Ru(CO)2(PR3)2. Irradiating a 4:1 CH2Cl2 to EtOAc solution of Ru3(CO)9(PR3)3 under an atmosphere of H2 leads to the novel dihydrido species H2Ru3(CO)7(PR3)3. Thermolysis of H2 saturated solutions of Ru3(CO)9(PR3)3 leads to H4Ru4(CO)8(PR3)4.  相似文献   

5.

The reaction of NaCo(CO)4-x (PR3) x (x = 0, 1) with Au(PR3)Cl was examined in THF. The products were characterized by single crystal X-ray analysis and/or XPS spectroscopy. When the THF solution of NaCo(CO)4-x (PR3) x which was in situ prepared by the reduction of the corresponding cobalt carbonyl dimer with Na amalgam was filtered, the main product was (R3P)Au-Co(CO)4 and (R3P)Au-Co(CO)4-x (PR3) x (x = 1,2); phosphine migration from the Au to the Co site was observed for bulky phosphines during the recrystallization process. When the THF solution of NaCo(CO)4-x (PR3) x was not filtered, the main product had the composition of M[Co(CO)3(PR3)]2. The element M was clearly determined to be Hg by XPS spectroscopy. The reaction of NaMn(CO)5 with Au(PR3)Cl, however, afforded R3PAu-Mn(CO)5. The bonding parameters such as Au-M and Hg-Co bond-lengths were interpreted in terms of the electronic nature of the R group of the monodentate PR3 ligand.  相似文献   

6.
The complexes Et4N[Rh(SnCl3)2(diolefin)(PR3)] (diolefin = COD or NBD) have been isolated and their reactions studied. Reaction with arylic tertiary phosphines led to SnCl3 displacement and isolation of neutral pentacoordinated Rh(SnCl3)(diolefin)(PR3)2 complexes. Reaction with carbon monoxide involved diolefin displacement when the diolefin was COD, thus giving Et4N[Rh(SnCl3)2(CO)2(PR3)] compounds, but SnCl3 displacement when it was NBD, thus yielding Rh(SnCl3)(CO)(NBD)(PR3) complexes. The complexes [Rh(diolefin)Cl]2 were found to react with triarylphosphines in the presence of SnCl2 and with CO bubbling through the solution to give Rh(SnCl3)(CO)(NBD)(PR3) when the diolefin was NBD but Rh(Cl)(CO)(PR3)2 when the diolefin was COD.  相似文献   

7.
Complexes with terminal phosphanido (M? PR2) functionalities are believed to be crucial intermediates in new catalytic processes involving the formation of P? P and P? C bonds. We showcase here the isolation and characterization of mononuclear phosphanide rhodium complexes ([RhTp(H)(PR2)L]) that result from the oxidative addition of secondary phosphanes, a reaction that was also explored computationally. These compounds are active catalysts for the dehydrocoupling of PHPh2 to Ph2P? PPh2. The hydrophosphination of dimethyl maleate and the unactivated olefin ethylene is also reported. Reliable evidence for the prominent role of mononuclear phosphanido rhodium species in these reactions is also provided.  相似文献   

8.
A thorough IR and 1H-, 13C-, 31P-, 183W-NMR spectroscopic, and X-ray structural study was carried out on complexes of the type trans, trans-[WH(CO)2(NO)(PR3)2], (R = Et, Me, Ph, i-PrO, MeO, and PhO). Linear correlations could be found between Tolman's parameter X and v(CO), v(WH), v(NO), δ(13C) (CO), as well as 1n(k), k being the H/D exchange rate constant for the hydride in CD3OD. The 1J(183W,31P), 2J(31P,1H), and 2J(31P,13C) as well as the 1J(183W,1H) values are related to the electronegativity of the R groups on the phosphorus ligands. This is also indicated by EHT calculations of s-orbital populations of appropiate W model complexes. The X-ray structures of [WH(CO)2(NO)(PR3)2] (R = Me, Ph, and MeO) were determined. Minor differences were observed in the W? P bond lenghts and in the P? W? P and C? W? C angles. No obvious relationship between X-ray data and spectroscopic parameters could be found. All three structures reveal a bending of both the CO and PR3 ligands towards the hydride atom. The total octahedral distortion is remarkably constant (25.6, 29.4, and 27.0° tilt, respectively), although the ligands individually are very different. This is attributed to redistribution of π-electron density between CO and PR3 groups toward the central W-atom in the three complexes.  相似文献   

9.
Mono-cyclopentadienyl complexes CpVX2(PR3)2 and Cp′VX2 (PR3)2 (Cp = η5- C5H5; Cp′ = η5-C5H4Me; R = Me, Et; X = Cl, Br) have been prepared by reaction of VX3(PR3)2 with CpM (M = Na, T1, SnBun3, 1/2 Mg) or Cp′Na. Attempts to prepare analogous complexes with other phosphine ligands, PPh3, PPh2 Me, PPhMe2, Pcy3, DMPE and DPPE failed. Reduction of CpVCl2(PEt3)2 with zinc or aluminium under CO (1 bar) offers a simple method for the preparation of CpV(CO)3(PEt3). The crystal structure of the trimethylphosphine complex CpVCl2(PMe3)2 is reported.  相似文献   

10.
New anionic carbonylcobalt(I) complexes [X2Co(CO)2(PPh3)](PR4) (X=Cl, PR4 = PBzPh3 (I); X = Br, PR4 = PEtPh3 (II)) have been prepared by reduction of the cobalt(II) halides with NaBH4 in the presence of PPh3 and the phosphonium salt PR4X. Cleavage of halide bridges in dimeric or polymeric [XCo(PPh3)2]n and [XCo(PPh3)]n gives the neutral dicarbonyl derivatives XCo(CO)2PPh3)2. Treatment of ClCo(CO)2(PPh3)2 with alkylating agents gives the known σ- and η- organocobalt(I) derivatives, and reactions with TIClO4 in the presence of various amounts of different mono- and bi-dentate phosphines give the cationic tricarbonyl [Co(CO)3(PPh3)2]+, dicarbonyl [Co(CO)2(PMePh2)3]+ and monocarbonyl [Co(CO)L4]+ complexes (L4 = 4P(OMe)3, 2 dppe and 2dppm). The dppm complex crystallizes in the monoclinic space group P21/c with a 17.895(6), b 10.751(2), c 24.687(4) Å, β 98.92(1)°, and Dcalc 1.35 g cm−3 for Z = 4. A final R value of 0.077 ( Rw = 0.061), based on 2656 observed reflections, was obtained. The cobalt atom exhibits a distorted trigonal bipyramidal geometry. The perchlorate anion is severely disordered or freely rotating.  相似文献   

11.
Reactions of NaER (E = Se, Te; R = Ph, substituted Ph or 2-pyridyl) with a number of mono- and bi-nuclear palladium and platinum complexes have been investigated. Complexes of the type [M(Sepy)2], [M(ER)2(PR3)2], [M2Cl2(μ-ER)2(PR3)2] and [M2Cl2(μ-Cl)(μ-ER)(PR3)2] (M = Pd, Pt) were isolated. They were characterized by elemental analysis, NMR (1H, 13C, 31P, 77Se, 125Te, 195Pt) data and in a few cases by X-ray diffraction studies. The [M(Sepy)2(PPh3)2] dissociates into PPh3 and [M(Sepy)(η2-Sepy)(PPh3)] in solution. 2-Selenopyridine in its complexes acts in a monodentate (bonding through selenium) as well as in chelating (Se?N) or bridging fashion. The mononuclear complexes [M(ER)2(PR3)2] are useful precursors for stepwise synthesis of cationic bi- and tri-nuclear derivatives.  相似文献   

12.
The kinetics of the reactions of methoxyorganylcarbenechromium complexes Cr(CO)5C(OCH3)R′ (R′ = CH3, C6H5) with tertiary phosphines PR3 have been studied by means of spectrophotometric methods. The reaction products of general composition cis-Cr(CO)4(PR3)C(OCH3)R′, Cr(CO)5PR3 and trans-Cr(CO)4(PR3)2 are formed by cleavage of both the Cr-CO and the Cr-C(carbene) bonds. The two-term rate law indicates two parallel, dissociative and associative, mechanisms. The kinetic data will be discussed in connection with the concept of labilising and non-labilising ligands.  相似文献   

13.
Syntheses of the complexes trans-[PtCl2(PR3)Mo2(CO)45-C5H5)2(tBuCP)], (PR3=PEt3, PPr3, PBu3, PPh2Me, PPhMe2) trans-[PdCl2(PBu3)Mo2(CO)45-C5H5)2(tBuCP)], and trans[RhCl{(PF2NMe)2CO}Mo2(CO)45-C5H5)2(tBuCP)] are described and their 31P NMR spectra presented and discussed.  相似文献   

14.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

15.
Metal Complexes with 1,2-Dithione Ligands. III. Dithiooxamides as Strong Donors or Acceptors in Molybdenum Carbonyl Complexes. Starting from substitution labile molybdenum carbonyl complexes L2Mo(CO)4, L3Mo(CO)3 and L2L2′Mo(CO)2 several new complex types with the C? C-twisted tetraalkyldithiooxamides (R4dto) and the planar N,N′-dialkyldithiooxamides (R2H2dto) such as (R4dto)Mo(CO)4 ( 8 – 11 ), (R2H2dto)Mo(CO)4 ( 12 – 18 ), (R2R2′dto)Mo(CO)3(P(C6H5)3) ( 27 – 31 ), (R2R2′dto)Mo(CO)2(PR3)2 ( 36 – 51 ) are described and compared with complexes of a cyclic dithiooxamide ( 62 – 64 ) and analogous complexes with thioamides R2NC(S)R′ ( 19 – 25 , 52 – 55 , 57 – 60 ). In Mo(CO)4 complexes, dithiooxamides display a rather strong donor character and are thus similar to simple thioamides, but the blue colour of the R2H2dto complexes indicates already low-lying acceptor levels. When passing from the Mo(CO)4 complexes via Mo(CO)3(PR3) complexes to the very electron rich Mo(CO)2(PR3)2 complexes, the i.r. and eletronic spectra indicate an unexpected and drastic change in ligand character. Dto ligands in the latter complex type turn out to be very strong acceptors, independent of the degree of N-alkylation. A conformational change, with twisted R2N? C bonds and a planar S? C? C? S skeleton (as in the dithiolene complexes), can account for all the peculiarities of the (dto)-dicarbonylbis(phosphine) complexes as compared to the “normal” thioamide complexes. Dithiooxamides can thus control the oxidation state of metals by a remote conformational change and possibly act as an electron reservoir in chemical reactions at the metal center.  相似文献   

16.
The halogen bridged binuclear complexes of rhodium(I) [RhCl(CO)(PR3)]2 undergo oxidative addition with methyl halides to yield the complexes [RhCl(CO)(PR3)(Me)(X)]2 (X = Cl, Br). The crystal and molecular structures of [RhCl(CO)(PMe2Ph)(Me)(Br)]2 have been determined from a single crystal by use of X-ray crystallographic methods. The space group is Pca21 or Pacm with a 19.501(5), b 10.381(4), c 13.641(5) e? Z = 4. Parameters of 30 nonhydrogen atoms in the space group Pca21 were refined by the full-matrix least squares technique to a conventional R factor of 0.073. In a binuclear unit, each rhodium atom is in an octahedral environment being bonded to a carbonyl group, a methyl group and a tertiary phosphine ligand and three halogen atoms for which, due to a disorder phenomenon, the diffusion factors have been determined as the average between those of chlorine and bromine atoms. In solution the cis-migration of the methyl groups occurs, leading to the acetyl complexes. In the case of CH3I, it is shown that an equilibrium is present in solution: [RhCl(CO)(PR3(Me)(I)]2 ? [RhCl(COMe)(PR3)(I)(solvant)]2] Carbonylation reactions shift this equilibrium to give the complexes [RhCl(CO)(COMe)(PR3(I)]2. Such complexes are readily prepared by direct oxidative addition of acyl halides to the compounds [RhCl(CO)(PR3)]2.  相似文献   

17.
The covalent carbamoyl carbonyl compounds Re(CO)5COHN2, cis-M(CO)4(L)CONH2, M(CO)3(L)2CONH2 and M(CO)3(D)CONH2 (M = Mn, Re; L = PPh3, PEt3; D = bipy, phen) are formed by reactions of the cationic complexes [Re(CO)6]+, [M(CO)5L]+, [M(CO)4L2]+ and [M(CO)4D]+ (M = Mn, Re; L = PPh3, PEt3; D = bipy, phen) with liquid NH3 with concomitant deprotonation: [M(CO)6?nLn]+ + 2 NH3 → M(CO)5?nLnCONH2 + NH4+ (n = 0, 1, 2) and [M(CO)4D]+ + 2 NH3 → M(CO)3(D)CONH2 + NH4+ The stability of the above-mentioned carbamoyl carbonyl complexes increases from the penta- to the tetra- to the tri-carbonyl derivatives. In all cases the rhenium compounds are much more stable than the corresponding manganese complexes. Whereas the carbamoyl compound Re(CO)4(PEt3)CONH2 can be isolated by reaction of [Re(CO)5PEt3]+ with NH3, the corresponding manganese complex undergoes Hofmann degradation of amides even at ?70°C to form HMn(CO)4PEt3 and NH4NCO. The IR and some mass and 1H NMR spectra of the new hexacoordinated carbamoyl carbonyl complexes are discussed and the reactions of these compounds with liquid NH3, HCl and CH3OH are described.  相似文献   

18.
SnCl2 as a Bridging Ligand in [{(CO)5M}2Sn(Cl)2]2? (M = Cr, Mo, W) — Synthesis, Structure, and Reactivity [{(CO)5Cr}2Sn(Cl)2]2?, 1 , may be obtained from [(CO)5Cr]2? or [(CO)5CrSnCl2 · THF] in fair yields. Alternatively, 1 is accessible by the reaction of [Cr2(CO)10]2? with SnCl2. This procedure may be extended to the synthesis of [{(CO)5M}2Sn(Cl)2]2? (M = Mo, 2 ; M = W, 3 ). The compounds 1–3 are crystallized as their alkalimetal (12-crown-4)2 or [2,2,2]cryptand salts. X-ray analyses demonstrate bridging SnCl2-moieties with M? Sn? M-angles close to 130° in each case. The relation of the bonding situation in 1–3 to the ones observed for stannylene or ?inidene”? complexes, respectively, is discussed. The transformation of 1 into the rhombododecahedral (X-ray analysis) Sn? O-cage compound [{(CO)5CrSn}63-O)43-OH)4], 4 , demonstrates the reactivity of the dianions 1–3 .  相似文献   

19.
The monomers R3P(CO)3Co-AsMe2 (R = Me,MeO) decompose at ?10°C, the monomers (R3P)2(CO)2Co-AsMe2 (R = Me, MeO) are stable at room temperature. They are prepared from the very unstable (CO)4Co-AsMe2 by phosphine substitution at low temperatures or from KCo(CO)3PR3 and Me2AsCl. They are organometallic Lewis bases forming dinuclear and trinuclear arsenic bridged complexes with metal carbonyls.  相似文献   

20.
The two‐step one‐pot oxidative decarbonylation of [Fe2(S2C2H4)(CO)4(PMe3)2] ( 1 ) with [FeCp2]PF6, followed by addition of phosphane ligands, led to a series of diferrous dithiolato carbonyls 2 – 6 , containing three or four phosphane ligands. In situ measurements indicate efficient formation of 1 2+ as the initial intermediate of the oxidation of 1 , even when a deficiency of the oxidant was employed. Subsequent addition of PR3 gave rise to [Fe2(S2C2H4)(μ‐CO)(CO)3(PMe3)3]2+ ( 2 ) and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)2(PR3)2]2+ (R=Me 3 , OMe 4 ) as principal products. One terminal CO ligand in these complexes was readily substituted by MeCN, and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)3(MeCN)]2+ ( 5 ) and [Fe2(S2C2H4)(μ‐CO)(CO)(PMe3)4(MeCN)]2+ ( 6 ) were fully characterized. Relevant to the Hred state of the active site of Fe‐only hydrogenases, the unsymmetrical derivatives 5 and 6 feature a semibridging CO ligand trans to a labile coordination site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号