首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Die Umsetzung von N?N’?-Dimethylthioharnstoff mit PCl3 führt zur cyclischen Verbindung I mit einer direkten Phosphor—Phosphor-Bindung. Die neue Verbindung ist durch ihre 31P- und 1H-NMR-Spektren, das Schwingungs- und Massenspektrum und durch eine Röntgenstrukturanalyse charakterisiert. On P? P Containing Cyclic Compounds. I Reaction of N?N’?-dimethylthiourea with PCl3 yields the cyclic compound I with a direct phosphorus—pphosphorus bond. The new compound is characterized by its 31P- and 1H-nmr spectra, the vibration and mass spectra and an X-ray structural analysis.  相似文献   

2.
Inhaltsübersicht. Diphenylphosphin und rac-Cyclophosphamid (ClCH2CH2)2NP(O)N(H)(CH2)3O (1) reagieren in Gegenwart von n-Butyllithium zu einem Zwischenprodukt, das mit Wasser das diphenylphosphinsubstituierte Cyclophosphamid, (Ph2PCH2CH2)2NP(O)N(H)(CH2)3O, (2) bildet. Metallierung von 2 mit n-BuLi am N(3)-Atom und Umsetzung mit D2O führt zum N(3)-Deuteroderivat 2a. Mit H2O2 reagiert 2 zur all-Phosphinoxid Verbindung, [Ph2P(O)CH2CH2]2NP(O)N(H)(CH2)3O, (4), die mit 0,5 Mol Wasser auskristallisiert und von der zur Charakterisierung des H-Bückenbindungssystems eine Röntgenstrukturanalyse angefertigt wurde. Die NMR-Spektren (1H, 13C, 31P, 14N) weisen 2–4 als dynamische Moleküle aus. Chemistry of Polyfunctional Molecules. 101. Synthesis of a Diphenylphosphinesubstituted Cyclophosphamide and the X-ray Diffraction of its Oxidation Product Diphenylphosphine and rac-cyclophosphamide, (ClCH2CH2)2NP(O)N(H)(CH2)3O, (1) react in the presence of n-BuLi to an intermediate which hydrolyses to the diphenylphosphine substituted Cyclophosphamide, (Ph2PCH3CH2)2NP(O)N(H)(CH2)3O, (2). Metallation of 2 with n-BuLi at the N(3) atom, followed by treatment with D2O yields the N(3)-deuterated derivative 2a. With H2O2 2 forms the all-phosphine-oxide compound, [Ph2P(O)CH2CH2]2NP(O)N(H)(CH2)3O, ( 4 ), which crystallizes with 0.5 mole of water. In order to characterize the H-bridge bonding system a X-ray structure analysis of 4 was carried out. The NMR-Spectra (1H, 13C, 31P, 14N) indicate 2–4 as dynamic molecules.  相似文献   

3.
Primäre Mercaptoalkylphosphine H2 (H2P? CH2? CH2? SH; H2P? CH2? CHCH3? SH) reagieren mit Salzen der d8-Metalle zu planaren 1:2-Chelatkomplexen. Synthese, Struktur und Eigenschaften der Koordinationsverbindungen werden diskutiert, wobei besonderes Interesse der Alkylierbarkeit des Schwefels sowie dem reaktiven Verhalten des primären Phosphinphosphors gilt. Letzterer läßt sich mit Kalium metallieren und anschließend mit geeigneten Alkylhalogeniden in Derivate mit sekundärem Phosphinphosphor überführen. On the Coordination Chemistry of Phosphines and Phosphinoxides. XXX. Nickel, Palladium, and Platinum Complexes of Primary Mercaptoalkylphosphines Primary Mercaptoalkylphosphines H2 (H2P? CH2? CH2? SH; H2P? CH2? CHCH3? SH) react with d8-metal salts to give planar 1:2 chelat complexes. Synthesis, structure, and properties of these compounds are discussed. Special interest apply to the alkylation of sulphur and the reactive behaviour of the primary phosphine phosphorus. The latter can be metalled by potassium and after that it is possible to alkylate with suitable alkyl halides to give derivates with secondary phosphine phosphorus.  相似文献   

4.
Die Selektivität und funktionale Variabilität von Porphyrinkofaktoren basiert typischerweise auf der Substratbindung durch Metalloporphyrine, wobei die Pyrrolstickstoffatome nur zur Chelatisierung der Metallionen dienen. In einem ersten Schritt zu Porphyrinzentren mit “enzymähnlicher” Aktivität zeigt eine strukturelle und spektroskopische Untersuchung der Substratbindung im Kern jedoch, dass ein sattelverbogenes Porphyrin mit peripheren Aminorezeptorgruppen ( 1 , 2,3,7,8,12,13,17,18‐Oktaethyl‐5,10,15,20‐tetrakis(2‐aminophenyl)porphyrin), abhängig von der Azidität der Lösung, Analyte in einer schaltbaren Weise koordiniert. Das supramolekulare Ensemble weist eine hohe Affinität und Selektivität für das Pyrophosphatanion (2.26±0.021)×109 m ?1 auf. 1H‐NMR‐Spektroskopie liefert Einblicke in den wahrscheinlichen Bindungsmodus und erlaubt die Charakterisierung der Atropisomere, deren Struktur auch durch Röntgenstrukturanalysen aufgeklärt wurde.  相似文献   

5.
Loss of an alkyl group X? from acetylenic alcohols HC?C? CX(OH)(CH3) and gas phase protonation of HC?C? CO? CH3 are both shown to yield stable HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}(OH)(CH3) ions. Ions of this structure are unique among all other [C4H5O]+ isomers by having m/z 43 [C2H3O]+ as base peak in both the metastable ion and collisional activation spectra. It is concluded that the composite metastable peak for formation of m/z 43 corresponds to two distinct reaction profiles which lead to the same product ion, CH3\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O, and neutral, HC?CH. It is further shown that the [C4H5O]+ ions from related alcohols (like HC?C? CH(OH)(CH3)) which have an α-H atom available for isomerization into energy rich allenyl type molecular ions, consist of a second stable structure, H2C?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? C(OH)?CH2.  相似文献   

6.
The abundant [C4H5O]+ (m/z 69) ions found in the 70 eV mass spectra of a series of acetylenic, allenylic and unsaturated cyclic ethers are shown to have the following structures: HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H? OCH3 (e), H2C?C?—OCH3 (f), (g) and H? C?C? CH2—O\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H2 (h). Of these, the cyclic ion g is the most stable: its ion enthalpy (≥ 165 kcal mol?1) is close to that found for the acyclic C3H5\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? O isomers identified in a previous study. Evidence that these four isomeric [C4H5O]+ ions are stable species with lifetimes ≥ 10?5 s is obtained from their collisional activation spectra, the shape of the metastable peaks and the associated kinetic energy release values for the common loss of CO, thermochemical information and analysis of deuterium and carbon-13 labelled precursor molecules. It is further shown that loss of X? from ethers of the type X? C?C? CH2OCH3 involves isomerization into energy rich allenyl type ions [(X)HC?C?CHOCH3]+˙ . These ions undergo loss of X? by simple bond cleavage, yielding, e type product ions, when the C? X bond strength is relatively low (X?I, Br). When X?Cl and especially CH3 or H, X? is only lost after rearrangement yielding the cyclic product ion g. The mechanism for this cyclization reaction is related to that proposed in a previous study for the ester→ acid isomerization in the molecular ions of the esters of α, β-unsaturated carboxylic acids.  相似文献   

7.
Bor-Stickstoff-Verbindungen. 88. Borderivate von pyridylalkylaminen Die Umsetzung von 2-Aminomethylpyridin oder 2-Aminoäthylpyridin mit Trialkylboranen im Molverhältnis 1:2 führt zu Zwischenprodukten, deren Thermolyse (2-Pyridylalkylamino)dialkylborane C5H4N? 2-(CH2)n? NH? BR2 (n = 1, 2; R ? C2H5, n-C3H7) ergibt. Kernresonanzspektroskopische Untersuchungen an diesen Verbindungen zeigen, daß im Falle von R ? C2H5 ein intramolekularer bicyclischer Komplex mit vierbindigem Bor vorliegt. Ist R ? C3H7, so liegt für n = 1 eine entsprechende Struktur neben der nicht koordinierten Verbindung mit dreibindigem Bor vor, während für n = 2 ausschließlich letztere Struktur existiert. Das Verhalten der beiden Basen bei Umsetzungen mit vierfach koordiniertem Bor ist dagegen gleichartig. So findet mit Trimethylamin-Boran in beiden Fällen gleichzeitige Basenverdrängung und Kondensation statt, was zu Amin-Aminoboranen H2B? NH? (CH2)n? C5H4N? BH3 führt, während die Reaktion mit Trimethylamin-Iodboran unter Verdrängung von Base und Iodidion zu Boronium(1+)-Salzen führt.  相似文献   

8.
Nickelocen reagiert mit Dialkylphosphiten HP(O)(OR)2 zu den Komplexen C5H5Ni[{P(OR)2O}2H] ( 1 :R ? Me; 2 :R ? Et), in denen ein sechsgliedriger NiP2O2H-Ring mit einer vermutlich symmetrischen OHO-Wasserstoffbrücke vorliegt. Die Umsetzung von 1 mit HBF4 führt zu C5H5Ni[{P(OMe)2O}2BF2] ( 3 ). Mit NH3 und Thalliumacetylacetonat entstehen aus 1 bzw. 2 die Komplexe [C5H5Ni{P(OR)2O}2]NH4 ( 4, 5 ) und [C5H5Ni{P(OR)2O}2]Tl ( 6, 7 ). Die entsprechenden Alkalimetallverbindungen [C5H5Ni{P(OMe)2O}2]M ( 8 :M ? Li; 9 :M ? Na) sind ausgehend von C5H5Ni[P(OMe)3][P(O)(OMe)2] und LiI bzw. NaI zugänglich. C5H5Ni[P(OMe)3][P(O)(OMe)2] reagiert mit HgI2 zu C5H5Ni[P(OMe)3]I und [IHg{P(O)(OMe)2}]2. Metallabisphosphonates as Chelating Ligands. I. Synthesis of Mononuclear Nickelbisphosphonates Containing a OHO-Hydrogen Bridge and of Corresponding Alkali Metal, Ammonium, and Thallium Compounds Nickelocene reacts with dialkylphosphites HP(O)(OR)2 to form the complexes C5H5Ni[{P(OR)2O}2H] ( 1 :R ? Me; 2 :Et) which contain a six-membered NiP2O2H ring with a presumably symmetrically OHO-hydrogen bond. The reaction of 1 with HBF4 leads to C5H5Ni?[{P(OMe)2O}2BF2] ( 3 ). The complexes 1 and 2 react with NH3 and thallium acetylacetonate to give [C5H5Ni{P(OR)2O}2]NH4 ( 4, 5 ) and [C5H5Ni{P(OR)2O}2]Tl ( 6, 7 ), respectively. The corresponding alkali metal compounds [C5H5Ni{P(OMe)2O}2]M ( 8 :M ? Li; 9 :M ? Na) are formed in the reaction of C5H5Ni[P(OMe)3][P(O)(OMe)2] with LiI or NaI. With HgI2, C5H5Ni[P(OMe)3][P(O)(OMe)2] reacts to yield C5H5Ni[P(OMe)3]I and [IHg{P(O)(OMe)2}]2.  相似文献   

9.
Chemistry of Polyfunctional Molecules. 119 [1]. Tetracarbonyl-dicobalt-tetrahedrane Complexes with the Ligands Bis(diphenylphosphanyl)-amine, 2-Butin-1,4-diol, and tert.-Butylphosphaacetylene — Crystal Structure of the Phosphaalkyne Derivative Co2(μ-CO)2(CO)4(μ-Ph2P? NH? PPh2P,P′) · 1/2C6H5CH3 ( 4 · 1/2C6H5CH3) reacts with 2-butine-1,4-diol, HOCH2? C?C? CH2OH ( 5 ), to the dark-red tetrahedrane complex Co2(CO)4(μ-η22-HOCH2? C?C? CH2OH? C2, C3) · (μ-Ph2P? NH? PPh2? P,P′) · THF (6 · THF). With t-butyl-phosphaacetylene, tBu? C?P ( 7 ), 4 · THF forms Co2(CO)4(μ-η22-tBu? C?P)(μ-Ph2P? NH? PPh2? P,P′) ( 8 ), which also belongs to the tetrahydrane type. The compounds were characterized by their mass, IR, 31P{1H} NMR, 13C{1H} NMR, and1H NMR spectra. Crystals suitable for X-ray structure analyses have been obtained for 8 from dioxane. The dark red blocks crystallize in the monoclinic P21/c space group with the lattice constants a = 1404,1(5), b = 1330,0(7), c = 2578,8(10)pm; β = 90,82(3)°.  相似文献   

10.
By combining results from a variety of mass spectrometric techniques (metastable ion, collisional activation, collision-induced dissociative ionization, neutralization-reionization spectrometry, 2H, 13C and 18O isotopic labelling and appearance energy measurements) and high-level ab initio molecular orbital calculations, the potential energy surface of the [CH5NO]+ ˙ system has been explored. The calculations show that at least nine stable isomers exist. These include the conventional species [CH3ONH2]+ ˙ and [HO? CH2? NH2]+ ˙, the distonic ions [O? CH2? NH3]+ ˙, [O? NH2? CH3]+ ˙, [CH2? O(H)? NH2]+ ˙, [HO? NH2? CH2]+ ˙, and the ion-dipole complex CH2?NH2+ …? OH˙. Surprisingly the distonic ion [CH2? O? NH3]+ ˙ was found not to be a stable species but to dissociate spontaneously to CH2?O + NH3+ ˙. The most stable isomer is the hydrogen-bridged radical cation [H? C?O …? H …? NH3]+ ˙ which is best viewed as an immonium cation interacting with the formyl dipole. The related species [CH2?O …? H …? NH2]+ ˙, in which an ammonium radical cation interacts with the formaldehyde dipole is also a very stable ion. It is generated by loss of CO from ionized methyl carbamate, H2N? C(?O)? OCH3 and the proposed mechanism involves a 1,4-H shift followed by intramolecular ‘dictation’ and CO extrusion. The [CH2?O …? H …? NH2]+ ˙ product ions fragment exothermically, but via a barrier, to NH4+ ˙ HCO…? and to H3N? C(H)?O+ ˙ H˙. Metastable ions [CH3ONH2]+…? dissociate, via a large barrier, to CH2?O + NH3+ + and to [CH2NH2]+ + OH˙ but not to CH2?O+ ˙ + NH3. The former reaction proceeds via a 1,3-H shift after which dissociation takes place immediately. Loss of OH˙ proceeds formally via a 1,2-CH3 shift to produce excited [O? NH2? CH3]+ ˙, which rearranges to excited [HO? NH2? CH2]+ ˙ via a 1,3-H shift after which dissociation follows.  相似文献   

11.
me3Si? CCl2?Sime2Cl (me ? CH3) läßt sich mit n-buLi (bu ? C4H9) bei–100°C (Lösungsmittel THF/Äther) in me3Si? CCl(Li)? Sime2Cl a überführen. das mit meJ me3Si? CClme? Sime2Cl bildet. Wird a in Abwesenheit eines Abfangreagenzes langsam erwärmt, so bildet sich unter Abspaltung von LiCl (Cl aus der SiCl-Gruppe) über eine reaktive Zwischenstufe des Bicyclobutans b . Die Struktur von b ist durch NMR-Untersuchung, Röntgenstrukturanalyse und Abbaureaktionen gesichert. Mit HBr bzw. CH3OH werden die Si? C-Bindungen der Dreiringe in b gespalten, so daß sich me3Si? CH2? C(Sime2X)2Sime3 (X ? Br, OCH3) bildet. Formation of Organosilicon Compounds. 85. Formation, Reactions, and Structure of 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl)-1,3-disilabicyclo[1, 1, 0]butane me3Si? CCl2? Sime2Cl (me ? CH3) with n-buLi (bu ? C4H9) at –100°C (solvent: THF/ether) yields me3Si? CCl(Li)? Sime2Cl a , which forms me3Si? CClme? Sime2Cl with meI. By warming a slowly in absence of any trapping reagent the bicyclobutane b is obtained via a reactive intermediate under elimination of LiCl (Cl from the SiCl group). The structure of b is established by nmr investigations, X-ray structure determination and chemical derivatisation.  相似文献   

12.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   

13.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

14.
Inhaltsübersicht. Die Titelverbindung[(CH3)3Si]2N–S–N[Si(CH3)3]2 wurde durch Reaktion von Lithium-bis(trimethylsilyl)arnid mit Schwefeldichlorid hergestellt. Elektronenabsorptions-, Infrarot-, Kernresonanz- (1H, 13C, 29Si, 15N) und Massenspektren werden mitgeteilt. Die Reaktivität der Verbindung wurde untersucht. Bis[bis (trimethylsilyl) amino] sulfane. 1. Synthesis and Characterization Abstract, The title compound [(CH3)3Si]2N–S–N[Si(CH3)3]2 has been prepared by reaction of lithium bis(trimethylsilyl)amide with sulfur dichloride. Electron absorption, infrared, nuclear magnetic resonance (1H, 13C, 29Si, 16N), and mass spectra are given. The reactivity of the compound has been studied. Im Zusammenhang mit unseren Untersuchungen [1–3] über S-Bis(trimethyl-eilyl)aminoester von Dithiocarbamidsäuren RR′N–CS–S–N[Si(CH3)3]2 haben wir uns mit dem Bis[bis(trimethylsilyl)amino]sulfan [(CH3)3Si]2N-S-N[Si(CH3)3]2 befaßt. Diese Verbindung wurde erstmals 1962 von Wannagat u. Kückertz [4] hergestellt und kurz beschrieben. Wolmershäuser u. Mitarb. [5] teilten einige wenige spektroskopische Daten mit; vgl. auch [6, 7].  相似文献   

15.
Inhaltsübersicht. Die Reaktion von Difluorhalogenmethanen, CF2X2, mit Phosphanen, R3P, in Gegenwart von Metallen und Carbonylverbindungen, R″R′CO, führt zur Bildung geminaler Difluorolefine, R″R′C=CF2. Die sorgfältige Untersuchung der Einzelschritte dieser komplexen Reaktion zeigt, daß intermediär Difluorhalogenmethylphosphoniumhalogenide, [R3P–CF2X]X, und Difluormethylenphosphorane, R3P – c??-F2, gebildet werden. Die Phosphoniumsalze sind stabil und können als kristalline Substanzen isoliert werden. Durch Metalle oder Phosphene werden sie zu den instabilen Difluormethylenphosphoranen reduziert. Diese zersetzen sich beim Fehlen geeigneter Reaktionspartner in Phosphan und Difluorcarben, CF2. Ihre Bildung durch Addition von CF2 an R3P ist nicht möglich. Mit Halogenwasserstoffen bilden sie Difluormethylphosphoniumsalze, [R3P-CHF2]X. Formation and Stability of Difluoromcthylene Phosphoranes, R3P —c?F2 In the presence of metals and carbonyl compounds, R″R′CO, the reaction of difluoro-halomethanes, CF2X2, with phosphanes, R3P, leads to the formation of geminal difluoroolefins, R″R′C=CF2. Our investigations have proved that difluorohalomethylphosphonium halides, [R3P–CF2X]X, and difluoromethylene phosphoranes, R3P–C??F2, are formed intermediately. The phosphonium salts are stable. They can be isolated as crystalline substances. They are reduced by metals or phosphanes forming unstable difluoromethylene phosphoranes as intermediates. These decompose into phosphane and difluorocarbene, CF2, if suitable reactants are absent. Their reaction with hydrogen halides, HX, yields difluoromethylphosphonium salts, [R3P–CHF2]X. The formation of difluoromethylene phosphoranes by addition of CF2 to R3P is not possible.  相似文献   

16.
Three new [C2H6O]+˙ ions have been generated in the gas phase by appropriate dissociative ionizations and characterized by means of their metastable and collisionally induced fragmentations. The heats of formation, ΔHf0, of the two ions which were assigned the structures [CH3O(H)CH2]+˙ and [CH3CHOH2]+˙ could not be measured. The third isomer, to which the structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = \mathop {\rm C}\limits^{\rm .} {\rm H} \cdot \cdot \cdot \mathop {\rm H}\limits^ + \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} is tentatively assigned, was measured to have ΔHf0 = 732±5 kJ mol?1, making it the [C2H6O]+˙ isomer of lowest experimental heat of formation. It was found that the exothermic ion–radical recombinations [CH2OH]++CH3˙→[CH3O(H)CH2]+˙ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm + } {\rm HOH + H}^{\rm .} $\end{document}→[CH3CHOH2]+˙ have large energy barriers, 1.4 and ?0.9 eV, respectively, whereas the recombinations yielding [CH3CH2OH]+˙ have little or none.  相似文献   

17.
Characterization of [C4H5O]+ ions in the gas phase using their metastable ion and collisional activation spectra shows that the three isomeric ions HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}H? OCH3, CH3O? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?C?CH2 and ? OCH3 related to the two stable [C3H3]+ cations [HC?C? CH2]+ and are stable for ≥ 10?5s. In contrast to the formation of cyclopropenium ions, it is found that the methoxy cyclopropenium ion is not generated from acyclic precursor molecules. The small but significant intensity differences found in the collisional activation spectra of [C3H3]+ ions generated from HC?C? CH2I and HC?C? CH2Cl possibly indicate the presence of [C3H3]+ ions of different structures.  相似文献   

18.
The NCI(F?) and NCI(NH2?) mass spectra of a series of aliphatic acetates and of methyl and ethyl trimethylacetate have been obtained. The formation of fluoroenolate ions CH2COF? and of carboxamide anions RCONH? (R ? CH3))CH3C). respectively, is observed besides formation of [M ? H]? ions and carboxylate ions RCOO? (R ? CH3, (CH3)3C). The relative intensities of the different anions depend on the structure of the ester molecules and on the primary reactant anions. Usually, the NCI(NH2?) spectra of the acetates are dominated by [M ? H]? ions ([M? D]? ions in the case of trideuteroacetates) fragmenting unimolecularly by elimination of an alcohol. The carboxylate ions are important fragments, too, but carboxamide ions are only observed with large intensities in the NCI(NH2? spectra of the trimethylacetates. The NCI(F?) spectra show much larger intensities of carboxylate ions and fluoroenolate ions. The mechanisms of the fragmentation reactions are discussed. The results indicate that most or even all of the fragment ions in the NCI(F? mass spectra of aliphatic esters are formed by addition-elimination reactions via a tetrahedral intermediate, while competition between direct proton abstraction and addition-elimination reactions occurs in the NCI(NH2?) mass spectra because of the higher basicity of NH2? resulting in an early transition state for direct proton abstraction.  相似文献   

19.
Data derived from the carbon-13 NMR spectra of 37 organic polychloro compounds allow one to identify readily the ? CHCl2, ? CCl2? and ? CH2Cl groups, the 13C signals of which are registered in the shift ranges of 67 to 78 (80), 85 to 96 and 38 to 55 (59) ppm (from TMS), respectively, and have the distinctive one bond spin-spin coupling constants 1J(C? H) 170 to 184 Hz (for the ? CHCl2 groups) and 147 to 158 Hz (for the ? CH2Cl groups). The ? CCl2CH2CH2Cl fragment features characteristic diamagnetic shieldings of the ? CCl2? and ? CH2Cl that may be related to increased electron density on both of these groups.  相似文献   

20.
The complex Rh(acac)(CO)[P(tBu)(CH2CH=CH2)2] (1) proved to be an efficient precatalyst for the regioselective hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) under mild reaction conditions (125 °C and 4 atm H2). A kinetic study of this reaction led to the rate law:
$$ r \, = \{ K_{1} k_{2} /(1 \, + \, K_{1} {\text{H}}_{ 2} )\} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
which becomes
$$ r \, = \, K_{1} k_{2} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
at hydrogen pressures below 4 atm. The active catalytic species is the cationic complex {Rh(Q)2(CO)[P(tBu)(CH2CH=CH2)2]}+ (2). The mechanism involves the partial hydrogenation of one coordinated Q of (2) to yield a complex containing a 1,2-dihydroquinoline (DHQ) ligand, {Rh(DHQ)(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (3), followed by hydrogenation of the DHQ ligand to give THQ and a coordinatively unsaturated species {Rh(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (4); this reaction is considered to be the rate-determining step. Coordination of a new Q molecule to (4) regenerates the active species (2) and restarts the catalytic cycle.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号