首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The separation properties of different chromatographic methods regarding the enantioselective separation of axially chiral (atropisomeric) polybrominated biphenyls (PBB) were studied. For this purpose, the technical hexabromobiphenyl product Firemaster BP-6 was characterised by gas-chromatography coupled to electron capture detection (GC/ECD) and electron-capture negative ion mass spectrometry (GC/ECNI-MS) as well as by liquid chromatographic fractionating on active carbon and celite. Twelve individual PBBs including potential atropisomeric PBBs were isolated from Firemaster BP-6 by reversed-phase high-performance liquid chromatography (HPLC) on three serially coupled octadecylsilane columns. Six of the 12 isolated PBBs (three tri-ortho and di-ortho substituted PBBs, respectively) were separated into atropisomers on a HPLC column containing permethylated beta-cyclodextrin on silica. Moreover, the temperature dependency of the enantiomer separations is discussed. Gas chromatographic enantiomer separation of PBBs is a very demanding task due to high elution temperatures. However, the atropisomers of one tri-ortho substituted PBB congener (PBB 149) could be resolved on a column coated with randomly modified heptakis(6-O-tert.-butyldimethylsilyl-2,3-di-O-methyl)-beta-cyclodextrin in OV 1701.  相似文献   

2.
Some of the polybrominated biphenyls (PBBs) found in the environment are axially chiral, due to hindered rotation about the interannular phenyl-phenyl bond. This applies for PBB congeners having two or more bromine substituents in ortho-position to this bond. In this study analytical methods were developed that allow determining the enantiomer fraction (EF) of axially chiral (atropisomeric) PBBs in environmental samples. A white-tailed sea eagle egg was used as test sample. The egg extract was purified and further fractionated by normal phase (NP) high performance liquid chromatography (HPLC), yielding enriched fractions of axially chiral PBB 132 and PBB 149. Gas chromatographic (GC) enantioseparation of the atropisomers of PBB 149 was achieved on one of nine tested modified cyclodextrin phases. Due to coelution with an unknown brominated compound, conventional GC/ECNI-MS, which is based on the detection of the bromide ion, did not allow for the establishment of the EF. However, by means of GC/EI-MS-MS it was possible to verify an EF of 0.42-0.43, i.e. a significant enantiomeric enrichment of the second eluting atropisomer of PBB 149 in the white-tailed sea eagle egg. This is the first proof of non-racemic proportions of a chiral PBB in environmental samples. Despite the testing of nine different chiral stationary phases, GC enantioseparation of PBB 132 or other atropisomeric PBB congeners failed. For this reason, an enantioselective reversed-phase HPLC method was developed. This method proved to be a powerful tool for the separation of PBB atropisomers. It was found that even a standard of the di-ortho substituted PBB 153 could be partially separated into atropisomers at 0 degrees C but already enantiomerized at 5 degrees C. For establishing the EF of PBB 132 in the bird egg sample a combination of enantioselective HPLC followed by non-chiral gas chromatography was employed. Using enantioselective HPLC, the atropisomers of PBB 132 were quantitatively targeted into two separate fractions at room temperature (20 degrees C). After addition of internal standards for volume adjustment the relative amounts of the atropisomers in the isolated fractions were quantified by using non-chiral GC/EI-MS analysis. A deviation from the racemic mixture of the atropisomers of PBB 132 in the egg extract could not be statistically proven.  相似文献   

3.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   

4.
As one of approaches of developing novel HPLC stationary phases, we prepared Cu-octabromotetrakis(4-carboxyphenyl)porphine derivative-immobilized silica gels (Cu-OBTCPP(D)), and evaluated the availability of the resultant Cu-OBTCPP(D) as a stationary phase for separation of poly-aromatic-hydrocarbons (PAHs) and their related compounds. A Cu-OBTCPP(D) column was revealed to have an ability to separate simple PAHs and be useful as a stationary phase in both polar and non-polar eluents. The retention property of the Cu-OBTCPP(D) column was evaluated in various comparative experiments using commercially available columns. In comparison with 2-(1-pyrenyl)ethyl dimetylsilyl silica gel column (PYE column) regarding the retention behavior for PAHs etc., the Cu-OBTCPP(D) column showed stronger interactions involving pi electron in non-polar eluent than PYE column. In comparison with a pentabromobenzyloxy propylsilyl silica gel column (PBB column) regarding the influence of bromination, the Cu-OBTCPP(D) column was affected differently from the PBB column. In comparison with nitrophenylethyl silica gel column (NPE column) regarding the retention behavior for compounds having a dipole in a non-polar eluent, the Cu-OBTCPP(D) column showed electrostatic interactions such as dipole-dipole interaction equivalent to or larger than the NPE column.  相似文献   

5.
Guiochon G 《Journal of chromatography. A》2007,1168(1-2):101-68; discussion 100
Monolithic media have been used for various niche applications in gas or liquid chromatography for a long time. Only recently did they acquire a major importance in high-performance column liquid chromatography (HPLC). The advent of monolithic silica standard- and narrow-bore columns and of several families of polymer-based monolithic columns has considerably changed the HPLC field, particularly in the area of narrow-bore columns. The origin of the concept, the differences between their characteristics and those of traditional packed columns, their advantages and drawbacks, the methods of preparation of monoliths of different forms, and the current status of the field are reviewed. The actual and potential performance of monolithic columns are compared with those of packed columns. Monolithic columns have considerable advantages, which makes them most useful in many applications of liquid chromatography. They are extremely permeable and offer a high efficiency that decreases slowly with increasing flow velocity.  相似文献   

6.
Polybrominated biphenyls (PBBs) have been used as flame-retardants mainly in the 1970s. Nowadays, they are found as ubiquitous contaminants in environmental samples. 2,2',4,4',5,5'-hexabromobiphenyl (PBB 153) is one of the persistent organic pollutants whose global ban is currently under discussion. Like the polychlorinated biphenyls (PCBs), 209 PBB congeners are existing in theory. However, only approximately 40 PBBs have been identified to date. In this work, we therefore used UV light, a sun simulator and natural sunlight for the photochemical debromination of PBB 209. All techniques led to the reductive debromination of PBB 209 albeit at different speed. Shifts of bromine substituents were not observed. Normal phase and reversed phase high performance liquid chromatography (HPLC) was used for the isolation of 12 reaction products some of which could be identified by (1)H NMR (PBB 202, 201, 197, 208, and 207). The other isolates (PBB 179, 178, 176, 199, 197, 196, and 194) were identified by realization of photolytic transformation studies with all isolates followed by comparison and evaluation of the obtained product spectra. In this way, we were able to establish (relative) retention times of the three nonabromobiphenyls, 9 of the 12 octabromobiphenyls, 14 of the 24 heptabromobiphenyl, and 16 of the 42 hexabromobiphenyls. Data on 24 PBBs are presented for the first time. Evaluation of the samples showed that Br was alternately removed from both phenyl rings and that positions with two vicinal Br substituents were most affected. Likewise, ortho-substituted PBBs were enriched.  相似文献   

7.
Liquid chromatography at the critical condition (LCCC) is a high performance liquid chromatography (HPLC) technique that lies between size exclusion chromatography and adsorption-based interaction chromatography, where the elution of polymers becomes independent of polymer molecular weight. At LCCC, the balance between the entropic exclusion and the enthalpic adsorption interactions between polymers and stationary phases results in the simultaneous HPLC elution of polymers regardless of molecular weight. Using C18-bonded silica chromatographic columns with 5 μm particle size and different average pore size (diameter = 300 Å, 120 Å, 100 Å, and 50 Å), we report (1) the thermodynamic significance of LCCC conditions and (2) the influence of column pore size on the determination of critical conditions for linear polymer chains. Specifically, we used mixtures of monodisperse polystyrene samples ranging in molecular weight from 162 to 371,100 g/mol and controlled the temperature of the HPLC columns at a fixed composition of a mobile phase consisting of 57(v/v)% methylene chloride and 43(v/v)% acetonitrile. It was found that, at the fixed mobile phase composition, the temperature of LCCC (TLCCC) is higher for C18-bonded chromatographic columns with larger average pore size. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2533–2540, 2009  相似文献   

8.
We report an efficient method for the preparation and purification of the Ih and the D5h isomers of Tm3N@C80. Following preparation in a Kratschmer-Huffman electric-arc generator, the Tm3N@C80 isomers were obtained by a chemical separation process followed by a one-stage isomer selective chromatographic high-performance liquid chromatography (HPLC) separation (pyrenyl, 5PYE column). The HPLC chromatographic retention behavior on a pentabromobenzyl (5PBB) column suggests a charge transfer of approximately 6 electrons; [M3N] 6+@C80(6-) and the chromatographic retention mechanisms of the Ih and the D5h isomers of Tm3N@C80 on both 5PBB and 5PYE columns are discussed. Single-crystal X-ray diffraction data demonstrate that the Tm3N cluster has a planar structure but represents a tight fit for trapping the Tm3N cluster inside the I h - and the D 5h -C 80 cages. Specifically, the Tm atoms punch out the cage carbon atoms adjacent to them. The "punched out" effect can be demonstrated by cage radii and pyramidal angles at cage carbon atoms near the Tm atoms. The magnetic susceptibility (chiT) for Tm3N@ Ih -C80 was found to exhibit Curie-Weiss behavior with C = 23.4 emu.K/mol, which is consistent with the calculated value for three uncoupled Tm3+ ions by considering the spin and orbital contributions with no quenching of the orbital angular momentum ( L = 5, S = 1, and J = 6; Ccalcd = 23.3 emu.K/mol). The electrochemical measurements demonstrate that both the Ih and the D5h isomers of Tm3N@C80 have a large electrochemical gap.  相似文献   

9.
The synthesis, isolation, and spectroscopic characterizations of an endohedral fullerene with four heteroatoms encapsulated (ScYErN@C80) are reported for the first time. The isomeric structure and electronic properties of this molecule are studied by various spectrometry methods such as high-performance liquid chromatography (HPLC), laser desorption time-of-flight (LD-TOF) mass spectroscopy, cyclic voltammetry, Fourier transform infrared (FTIR) spectroscopy, and visible-near infrared (vis-NIR) absorption spectroscopy. The carbon cage of ScYErN@C80 is assigned as Ih-C80, and the four-membered ScYErN cluster is suggested to rotate rapidly inside the fullerene cage. Six electrons are transferred from the nuclear cluster ScYErN to the fullerene cage, which leads to a closed-shell electronic structure of the Ih-C80 and results in excellent stability of this molecule.  相似文献   

10.
The main relationship of high-performance liquid chromatography (HPLC) are considered. It is shown that the optimum conditions of ultrasensitive trace analysis should be achieved by using packed capillary columns manufactured from flexible quartz capillaries with dc approximately less than 0.2 mm. The main features of these columns (v opt = 0.6 v opt of that for conventional HPLC columns with double the hydraulic permeability) make it possible to obtain two or three times higher plate numbers for the same analysis time and column pressure characteristic of conventional HPLC, as a result of using a submicrometre sorbent. The main features of laser detection in capillary liquid chromatography (laser-induced fluorescence and cross-beam thermal lens absorption detectors) are considered. The requirements that should be met by a modern capillary liquid chromatograph based on using flexible quartz capillary columns with a submicrometre sorbent and laser detectors are formulated. Examples of using these systems for femtomole and attomole analyses of biological samples (amino acids and prostaglandins) are given.  相似文献   

11.
Abstract

Present chromatographic systems for the high-performance liquid chromatography (HPLC) of hydrophobic-proteins are generally limited to size-exclusion or ion-exchange chromatography. A major stumbling block to the successful chromatography of membrane-proteins is their limited solubility. Detergent is usally required to solublize these proteins. This detergent causes some problems in size-exclusion chromatography, but does not always interfere with the separation. It is more deleterious in anion-exchange chromatography, where ionic detergents can poison the column, and reversed-phase chromatography, where strong interactions can occur between the stationary phase and detergent. Successful chromatography of membrane-proteins requires favorable detergent/stationary-phase interactions that enhance, rather than interfere with, the separation.

To study these “detergent-mediated effects” a series of protein standards were chromatographed by reversed-phase HPLC. The column was then saturated with detergent and the standards rechromatographed. To evaluate any irreversible effects (caused by detergent/stationary-phase interactions) the column was washed extensively and re-evaluated. Following this procedure a variety of stationary-phases and detergents were tested.

The results of these studies showed that resolution was enhanced by detergent. Retention time was generally uneffected, but peak width was noticeably decreassed. Proteins were separated by fast gradients and recovered in high yields (95–99%). A C-18 stationary-phase gave better resolution than a C-8 stationary-phase. In all cases studied the column was irreversibly modified.

A final test of the “detergent-modified” columns was the chromatography of membrane-proteins. Prior attempts at the reversed-phase HPLC of these proteins had resulted in either no sample recovery, or of very low yields of purified protein. An acetylcholinesterase containing sample chromatographed as series of fused peaks, two of which were found to contain cholinesterase activity. Human lymophocyte function-antigen chromatographed as a single peak and was recoved with a 95% yield.  相似文献   

12.
The hydrophobic-subtraction model of reversed-phase column selectivity   总被引:1,自引:0,他引:1  
A recently developed treatment of reversed-phase column selectivity (the hydrophobic-subtraction model) is reviewed and extended, including its characterization of the selectivity of different column types (e.g., C1-C30, cyano, phenyl, etc.). The application of this model to retention data for various solutes and columns has provided new insights into the nature of different solute-column interactions and their relative importance in affecting sample retention and separation. Reversed-phase columns can be characterized by five selectivity parameters (H, S*, A, B and C), values of which are summarized here for more than 300 different columns. The selection of columns of either equivalent or different selectivity is readily achievable on the basis of their values of H, S*, etc. The development of the hydrophobic-subtraction model, its use in characterizing the selectivity of different reversed-phase liquid chromatography (RP-LC) columns, and its application to various practical problems as described here began in 1998. The original inspiration for this project owes much to Jack Kirkland, who also contributed actively to the initial studies that laid the foundation of this model; he has since provided other important support to this project. Jack and one of the authors (LRS) have enjoyed a strong professional relationship and personal friendship for the past 35 years, and it is the privilege of the authors to dedicate this paper and the work that it represents to Jack. His contributions to HPLC column technology have extended from the mid-1960s into the present century, and it is impossible to conceive of present day HPLC practice without Jack's contributions over the years. In this and other ways, his position as a pioneer and key implementer of HPLC is widely recognized. We wish Jack well in the years to come.  相似文献   

13.
Stationary phases are the basis of the development and application of high-performance liquid chromatography (HPLC). In this review we focused on the development of silica-based stationary phases, including the synthesis of silica gel and the application of silica in hydrophilic interaction chromatography (HILIC), reversed-phase liquid chromatography (RPLC), chiral separation chromatography, and ion chromatography. New stationary phases, advances in ionic liquid-modified silica, silica-based core-shell materials, and silica-based monolithic columns for HPLC are introduced separately.  相似文献   

14.
A new type of 2-D separation material was synthesized and studied. The material is suitable for 2-D chromatography utilizing both covalent and noncovalent interactions. The first dimension is boronate affinity chromatography, and the second dimension is RP chromatography (or vice versa). The polymeric media were prepared using p-vinylphenylboronic acid as the functional monomer. This monomer was selected due to the presence of the boronic acid group for the cis-diol/boronate interaction in boronate chromatography. Two crosslinkers were evaluated, namely ethylene glycol dimethacrylate and divinylbenzene. The crosslinker content was varied to maximize the polymer strength and the RP performance of the packed column. Several parameters were evaluated to define the optimum for polymer strength and column performance including crosslinker, porogen, initiator, and column-packing parameters. The polymer-based HPLC columns were successful in separating phenol, catechol, dimethylphthalate, and hydroquinone under RP conditions, and thus can be used as an RP HPLC column. The columns were also successful in separating catechol and adenosine under boronate chromatography conditions, and thus can be used as a boronate affinity column. Moreover, the two types of chromatography can be performed consecutively on the same column during one complete chromatographic run, making it a 2-D chromatography. Under these 2-D conditions, the catechol was separated from a mixture of phenol, catechol, dimethylphthalate, and hydroquinone; the adenosine ribonucleoside was separated from a mixture of adenosine ribonucleoside, adenosine deoxyribonucleoside, and uridine deoxyribonucleoside. This type of single-column 2-D HPLC eliminates the requirement of a complex and expensive multidimensional HPLC instrument and provides increased peak capacity for separation.  相似文献   

15.
Two polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were prepared by utilising the technique of the non-covalent molecular imprinting polymerisation in an aqueous medium. The polymers obtained were packed in HPLC columns and the effects of the mobile phase composition on the retention of the imprinting molecule and the selectivity of the stationary phases towards several analogous structures were studied by liquid chromatography. The columns showed a good level of selectivity towards the template and strictly related molecules. It was found that the molecular recognition mechanism acting on the columns was dependent on a combination of ion pair and hydrophobic interactions.  相似文献   

16.
A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.  相似文献   

17.
Reversed-phase liquid chromatography of tryptic peptides is shown in the capillary electrochromatography mode using microfabricated columns. Although selectivity is different, a mixture of tryptic peptides from ovalbumin appears to be as easily separated in the CEC as HPLC mode. The major difference between a separation in the macrofabricated CEC column and conventional separations in the HPLC mode is that separations are more readily achieved in the isocratic mode in the lower surface area microfabricated CEC columns.  相似文献   

18.
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.  相似文献   

19.
A method is proposed for the comprehensive characterization and comparison of columns in the high-performance liquid chromatographic (HPLC) and capillary electrochromatographic (CEC) modes. Using this approach, column parameters such as the number of plates, the eddy-diffusion and mass-transfer contributions to peak broadening, the permeability, and the analysis time are incorporated in a single graph and a comparison in terms of efficiency and speed is obtained. The chromatographic performance of silica-based and polymer-based monolithic capillary columns is discussed and a comparison is made with the performance of packed columns. Also, the potential of ultra-high-pressure liquid chromatography is discussed in this context. In the HPLC mode, the best results were obtained with silica monoliths; in the CEC mode, the low-density methacrylate-ester-based monoliths showed the best performance.  相似文献   

20.
Knowing the adsorption isotherms of the components of a mixture on the chromatographic system used to separate them is necessary for a better understanding of the separation process and for the optimization of the production rate and costs in preparative high-performance liquid chromatography (HPLC). Currently, adsorption isotherms are usually measured by frontal analysis, using conventional analytical columns. Unfortunately, this approach requires relatively large quantities of pure compounds, and hence is expensive, especially in the case of pure enantiomers. In this work, we investigated the possible use of packed micro-bore and capillary HPLC columns for the determination of adsorption isotherms of benzophenone, o-cresol and phenol in reversed-phase systems and of the enantiomers of mandelic acid on a Teicoplanin chiral stationary phase. We found a reasonable agreement between the isotherm coefficients of the model compounds determined on micro-columns and on conventional analytical columns packed with the same material. Both frontal analysis and perturbation techniques could be used for this determination. The consumption of pure compounds needed to determine the isotherms decreases proportionally to the second power of the decrease in the column inner diameter, i.e. 10 times for a micro-bore column (1 mm I.D.) and 100 times for capillary columns (0.32 mm I.D.) with respect to 3.3 mm I.D. conventional columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号