首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been carried out of the decay of ethanol in mouth‐exhaled and nose‐exhaled breath of two healthy volunteers following the ingestion of various doses of alcohol at different dilutions in water. Concurrent analyses of sequential single breath exhalations from the two volunteers were carried out using selected ion flow tube mass spectrometry, SIFT‐MS, on‐line and in real time continuously over some 200 min following each alcohol dose by simply switching sampling between the two volunteers. Thus, the time interval between breath exhalations was only a few minutes, and this results in well‐defined decay curves. Inspection of the mouth‐exhaled and nose‐exhaled breath data shows that mouth contamination of ethanol diminished to insignificant levels after a few minutes. The detailed results of the analyses of nose‐exhaled breath show that the peak levels and the decay rates of breath ethanol are dependent on the ethanol dose and the volume of ethanol/water mixture ingested. From these data, both the efficiency of the first‐pass metabolism of ethanol and the indications of gastric emptying rates at the various doses and ingested volumes have been obtained for the two volunteers. Additionally and simultaneously, acetaldehyde, acetic acid and acetone were measured in each single breath exhalation. Acetaldehyde, the primary product of ethanol metabolism, is seen to track the breath ethanol. Acetic acid, a possible secondary product of this metabolism, was detected in the exhaled breath, but was shown to largely originate in the oral cavity. Breath acetone was seen to increase over the long period of measurement due to the depletion of nutrients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Selected ion flow tube mass spectrometry (SIFT-MS) has been used to carry out a pilot parallel study on five volunteers to determine changes occurring in several trace compounds present in exhaled breath and emitted from skin into a collection bag surrounding part of the arm, before and after ingesting 75 g of glucose in the fasting state. SIFT-MS enabled real-time quantification of ammonia, methanol, ethanol, propanol, formaldehyde, acetaldehyde, isoprene and acetone. Following glucose ingestion, blood glucose and trace compound levels were measured every 30 min for 2 h. All the above compounds, except formaldehyde, were detected at the expected levels in exhaled breath of all volunteers; all the above compounds, except isoprene, were detected in the collection bag. Ammonia, methanol and ethanol were present at lower levels in the bag than in the breath. The aldehydes were present at higher levels in the bag than in breath. The blood glucose increased to a peak about 1 h post-ingestion, but this change was not obviously correlated with temporal changes in any of the compounds in breath or emitted by skin, except for acetone. The decrease in breath acetone was closely mirrored by skin-emitted acetone in three volunteers. Breath and skin acetone also clearly change with blood glucose and further work may ultimately enable inferences to be drawn of the blood glucose concentration from skin or breath measurements in type 1 diabetes.  相似文献   

3.
《Electroanalysis》2018,30(8):1610-1615
Nitric oxide (NO) levels in exhaled breath are a non‐invasive marker that can be used to diagnose various respiratory diseases and monitor a patient's response to given therapies. A portable and inexpensive device that can enable selective NO concentration measurements in exhaled breath samples is needed. Herein, the performance of an amperometric Pt‐Nafion‐based gas phase sensor for detection of NO in exhaled human nasal breath is examined. Enhanced selectivity over carbon monoxide and ammonia is achieved via an in‐line zinc oxide‐based filter. Exhaled nasal NO levels measured in 21 human samples with the sensor are shown to correlate well with those obtained using a chemiluminescence reference method (R2=0.9836).  相似文献   

4.
A novel imaging system of ethanol in exhaled breath induced by acetaldehyde dehydrogenase (ALDH2)-related alcohol metabolism has been developed. The system provides an image of ethanol distribution as chemiluminescence (CL) on an enzyme-immobilized support. The spatiotemporal change of CL generated by ethanol in exhaled breath after oral administration of ethanol was detected by employing an electron multiplier CCD (EM-CCD) camera, illustrated and analyzed. Prior to measurement of standard gaseous ethanol and ethanol in exhaled breath, the system was optimized by investigating the enzyme-immobilized supports, concentration of substrate and pH condition of Tris-HCl buffer solution. The ethanol skin patch test, a simple method as an indicator of ALDH2, was performed on healthy volunteers. Breath samples of 5 volunteers with ALDH2 (+) and 5 volunteers with ALDH2 (-) were used for exhaled ethanol analysis. Concentration-time profiles of exhaled ethanol obtained from all volunteers were analyzed over a period of 120 min after oral administration of ethanol (0.4 g per kg body weight) in the form of beer which contains 5% of alcohol. The results obtained from the system showed that the peaks of exhaled ethanol concentrations appeared at 30 min, which was considered as a rapid ethanol absorption phase following first-order kinetics. Exhaled ethanol concentrations of volunteers with ALDH2 (+) were lower than volunteers with ALDH2 (-) and the digestion of ethanol in volunteers with ALDH2 (+) was faster than in volunteers with ALDH2 (-). The eliminations were analyzed to follow zero-order kinetics with a rate constant for each group.  相似文献   

5.
A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m−3 in the swimming pool studies and between 97 and 460 ng m−3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.  相似文献   

6.
Collection of exhaled breath condensate (EBC) is a relatively simple noninvasive method of breath analysis; however, no data have been reported that would relate concentration of volatile compounds in EBC to their gaseous concentrations in exhaled air. The aim of the study was to investigate which volatile compounds are present in EBC and how their concentrations relate to results of direct breath analysis. Thus, samples of EBC were collected in a standard way from several subjects and absolute levels of several common volatile breath metabolites (ammonia, acetone, ethanol, methanol, propanol, isoprene, hydrogen cyanide, formaldehyde and acetaldehyde) were then determined in their headspace using selected ion flow tube mass spectrometry (SIFT-MS). Results are compared with those from on-line breath analyses carried out immediately before collecting the EBC samples. It has been demonstrated that SIFT-MS can be used to quantify the concentrations of volatiles in EBC samples and that, for methanol, ammonia, ethanol and acetone, the EBC concentrations correlate with the direct breath levels. However, the EBC concentrations of isoprene, formaldehyde, acetaldehyde, hydrogen cyanide and propanol do not correlate with direct breath measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The measurement of nitric oxide (NO) in exhaled air is used in diagnostics and monitoring the pathologies not only in the respiratory system but also in the oral cavity. It has shown a huge increase in its level in asthma and diseases of the oral cavity. It seems reasonable to undertake research on the impact of inflammation on the level of NO in exhaled air. The aim of the study is to make an evidence-based review of the application of NO levels in exhaled air in the diagnosis of inflammation and treatment monitoring on the basis of selected measuring devices. Methods and Results: This paper presents an example of the application of NO measurement in exhaled air in individual human systems. Selected measuring devices, their non-invasiveness, and their advantages are described. Discussion: The usefulness of this diagnostic method in pathologies of the oral cavity was noted. Conclusions: Measuring the level of NO in exhaled air seems to be a useful diagnostic method.  相似文献   

8.
The objective of the present study was to investigate whether analysis of carbon dioxide, acetone and/or butanol present in human breath can be used as a simple and noninvasive diagnosis method for obstructive sleep apnea syndrome (OSAS). For this purpose, overnight changes in the concentrations of these breath molecules were measured before and after sleep in 10 patients who underwent polysomnography and were diagnosed with OSAS, and were compared with the levels of these biomarkers determined after sleep in 10 healthy subjects. The concentrations of exhaled carbon dioxide were measured using external cavity laser‐based off‐axis cavity enhanced absorption spectroscopy, whereas the levels of exhaled acetone and butanol were determined using thermal desorption gas chromatography mass spectrometry. We observed no significant changes in the levels of exhaled acetone and carbon dioxide in OSAS patients after sleep compared with pre‐sleep values and compared with those in healthy control subjects. However, for the first time, to our knowledge, analyses of expired air showed an increased concentration of butanol after sleep compared with that before sleep and compared with that in healthy subjects. These results suggest that butanol can be established as a potential biomarker to enable the convenient and noninvasive diagnosis of OSAS in the future.  相似文献   

9.
Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of head and neck epidermoid cancer. We hypothesized that solid phase micro-extraction coupled to gas chromatography–mass spectrometry can discriminate patients with epidermoid head and neck cancer from healthy controls by analyzing the gaseous volatile organic compounds, VOC-profile, in exhaled breath, thus identifying some non-invasive biomarkers to be used in early detection. Twenty healthy subjects participated in a cross-sectional study plus 11 patients with epidermoid supraglottic laryngeal cancer. VOCs from T3 supraglottic cancer were clustered distinctly from those of T1 and healthy subjects. Up to seven VOCs were detected differently from healthy volunteers, mainly 2-butanone and ethanol. Thus VOC-patterns of exhaled breath may discriminate patients with epidermoid head and neck cancer from healthy controls.  相似文献   

10.
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.  相似文献   

11.
Selected-ion flow-tube mass spectrometry (SIFT-MS) has been used to monitor the volatile compounds in the exhaled breath of 30 volunteers (19 male, 11 female) over a 6-month period. Volunteers provided breath samples each week between 8:45 and 13:00 (before lunch), and the concentrations of several trace compounds were obtained. In this paper the focus is on ethanol and acetaldehyde, which were simultaneously quantified by SIFT-MS using H3O+ precursor ions. The mean ethanol level for all samples was 196 parts-per-billion (ppb) with a standard deviation of 244 ppb, and the range of values for breath samples analysed is 0 to 1663 ppb. The mean acetaldehyde level for all samples was 24 ppb with a standard deviation of 17 ppb, and the range of values for breath samples analysed is 0 to 104 ppb. Background (ambient air) levels of ethanol were around 50 ppb, whereas any background acetaldehyde was usually undetectable. Increased ethanol levels were observed if sweet drink/food had been consumed within the 2 h prior to providing the breath samples, but no increase was apparent when alcohol had been consumed the previous evening. The measured endogenous breath ethanol and acetaldehyde levels were not correlated. These data relating to healthy individuals are a prelude to using breath analysis for clinical diagnosis, for example, the recognition of bacterial overload in the gut (ethanol) or the possibly of detecting tumours in the body (acetaldehyde).  相似文献   

12.
COPD is a disease characterised by a chronic inflammation of the airways and a not fully reversible airway obstruction. The spirometry is considered as gold-standard to diagnose the disease and to grade its severity. In this study we used the methodology of Ion Mobility Spectometry in order to detect Volatile Organic Compounds (VOCs) in exhaled breath of patients with COPD. The purpose of this study was to investigate if the VOCs detected in patients with COPD were different from the VOCs detected in exhaled breath of healthy controls. 13 COPD patients and 33 healthy controls were included in the study. Breath samples were collected via a side-steam Teflon tube and directly measured by an ion mobility spectrometer coupled to a multi capillary column (MCC/IMS). One peak was identified only in the patients group compared to the healthy control group. Consequently, the analysis of exhaled breath could be a useful tool to diagnose COPD.  相似文献   

13.
采用高分辨电喷雾萃取电离质谱(EESI-MS)技术对肝衰竭患者和健康志愿者呼出气体样本进行快速检测, 结合多块偏最小二乘分析(MB-PLS)方法, 对多批次获取的呼出气体代谢数据进行统计建模分析, 并与传统的PLS方法进行比较. 结果表明, MB-PLS方法能有效消除批次差异对统计建模的影响. 此外, 利用MB-PLS模型变量VIP值对变量进行筛选, 可降低数据的冗余, 消除无关变量对模型的影响, 从而有效提高了模型的性能.  相似文献   

14.
This research represents a novel detection method of acetone level in the exhaled breath samples (RH=88 %) based on polypyrrole/tungsten oxide (PPy/WO3) nanocomposite sensor. The PPy/WO3 sensor was fabricated by the deposition of nanocomposite on/between interdigitated electrodes (IDEs) through electrospray coating and was then characterized by FE-SEM imaging. In this detection method, the coulometric signal of the sensor was calculated using Fast Fourier Continuous Cyclic Voltammetry (FFTCCV), where cyclic voltammetry (CV) was applied to the sensor in the defined potential rang and then charge changes of the sensor was obtained by integration of the current in all scanned potential ranges. FFTCCV method enhances the sensitivity of the sensor when exposed to the gas mixtures containing acetone. In addition to its fast coulometric response time (≤5 s) in the two linear ranges of 0.7–2.8 ppm and 2.8–28.2 ppm (R2=0.99), FFTCCV method provides the low detection limit of 70 ppb, and high sensitivity toward acetone at the optimum values of the parameters. The fabricated sensor showed great selectivity toward acetone when exposed to humid air and some exhaled gas like carbon dioxide, ammonia, methanol, ethanol and alkyl amines. The results were very satisfying as the sensor was capable to detect different acetone levels in human exhaled breath as non-invasive diagnosis of diabetes with a good correlation (R2≃0.9) to the routine blood sugar test taken by different commercial glucometers results.  相似文献   

15.
Cigarette smoking harms nearly every organ of the body and causes many diseases. The analysis of exhaled breath for exogenous and endogenous volatile organic compounds (VOCs) can provide fundamental information on active smoking and insight into the health damage that smoke is creating. Various exhaled VOCs have been reported as typical of smoking habit and recent tobacco consumption, but to date, no eligible biomarkers have been identified. Aiming to identify such potential biomarkers, in this pilot study we analyzed the chemical patterns of exhaled breath from 26 volunteers divided into groups of nonsmokers and subgroups of smokers sampled at different periods of withdrawal from smoking. Solid‐phase microextraction technique and gas chromatography/mass spectrometry methods were applied. Many breath VOCs were identified and quantified in very low concentrations (ppbv range), but only a few (toluene, pyridine, pyrrole, benzene, 2‐butanone, 2‐pentanone and 1‐methyldecyclamine) were found to be statistically significant variables by Mann–Whitney test. In our analysis, we did not consider the predictive power of individual VOCs, as well as the criterion of uniqueness for biomarkers suggests, but we used the patterns of the only statistically significant compounds. Probit prediction model based on statistical relevant VOCs‐patterns showed that assessment of smoking status is heavily time dependent. In a two‐class classifier model, it is possible to predict with high specificity and sensitivity if a subject is a smoker who respected 1 hour of abstinence from smoking (short‐term exposure to tobacco) or a smoker (labelled "blank smoker") after a night out of smoking (long‐term exposure to tobacco). On the other side, in our study "blank smokers" are more like non‐smokers so that the two classes cannot be well distinguished and the corresponding prediction results showed a good sensitivity but low selectivity.  相似文献   

16.
In selected ion flow tube mass spectrometry, SIFT‐MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H2CO, H2S and notably CO2. To date, the analysis of methane has not been considered, since it is known to be unreactive with H3O+ and NO+, the most important precursor ions for SIFT‐MS analyses, and it reacts only slowly with the other available precursor ion, O. However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O/CH4 reaction that produces CH3O ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH3O analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT‐MS. However, the associated limit of detection is rather high, at 0.2 parts‐per‐million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT‐MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near‐ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT‐MS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A study is described of the first on line, real time analyses of the exhaled breath of five anaesthetized patients during the complete perioperative periods of laparoscopic surgery. These breath analyses were achieved using a selected ion flow tube, SIFT-MS, instrument, located in the operating theatre at an acceptable distance from the operating table, and coupled to the endotracheal tube in the ventilation circuit via a 5 metre long capillary tube. Thus, inhalation/exhalation breathing cycles, set to be at a frequency of 10 per minute, were sampled continuously for water vapour, the metabolites acetone and isoprene and the propofol used to induce anaesthesia for each operating period that ranged from 20 min (shortest) to 80 min (longest). Whilst there was some loss of water vapour along the long sampling line, the concentrations of the other trace compounds were not diminished. The breath acetone was essentially at a constant level for each patient, but increased somewhat over the longest operating period due to the onset of lipolysis. Most interesting is the clear increase of breath isoprene following abdomen inflation with carbon dioxide. The vapour of the intravenously injected propofol was detected in the exhaled breath and remained essentially constant during the perioperative period. These analyses were performed totally non-invasively and the data were immediately and constantly available to the anaesthetist and surgeon. Exploitation of this development could influence decision making and potentially improve patient safety within the perioperative setting.  相似文献   

18.
E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis, which have shown their potential in several diseases. Before obtaining a full validation of these instruments in clinical settings, a number of methodological issues still have to be established. We aimed to assess whether variations in breathing rhythm during wash-in with VOC-filtered air before exhaled air collection reflect changes in the exhaled VOC profile when analyzed by an e-nose (Cyranose 320). We enrolled 20 normal subjects and randomly collected their exhaled breath at three different breathing rhythms during wash-in: (a) normal rhythm (respiratory rate (RR) between 12 and 18/min), (b) fast rhythm (RR > 25/min) and (c) slow rhythm (RR < 10/min). Exhaled breath was collected by a previously validated method (Dragonieri et al., J. Bras. Pneumol. 2016) and analyzed by the e-nose. Using principal component analysis (PCA), no significant variations in the exhaled VOC profile were shown among the three breathing rhythms. Subsequent linear discriminant analysis (LDA) confirmed the above findings, with a cross-validated accuracy of 45% (p = ns). We concluded that the exhaled VOC profile, analyzed by an e-nose, is not influenced by variations in breathing rhythm during wash-in.  相似文献   

19.
Exhaled breath analysis for early disease detection may provide a convenient method for painless and non-invasive diagnosis. In this work, a novel, compact and easy-to-use breath analyzer platform with a modular sensing chamber and direct breath sampling unit is presented. The developed analyzer system comprises a compact, low volume, temperature-controlled sensing chamber in three modules that can host any type of resistive gas sensor arrays. Furthermore, in this study three modular breath analyzers are explicitly tested for reproducibility in a real-life breath analysis experiment with several calibration transfer (CT) techniques using transfer samples from the experiment. The experiment consists of classifying breath samples from 15 subjects before and after eating a specific meal using three instruments. We investigate the possibility to transfer calibration models across instruments using transfer samples from the experiment under study, since representative samples of human breath at some conditions are difficult to simulate in a laboratory. For example, exhaled breath from subjects suffering from a disease for which the biomarkers are mostly unknown. Results show that many transfer samples of all the classes under study (in our case meal/no meal) are needed, although some CT methods present reasonably good results with only one class.  相似文献   

20.
Selected ion flow tube mass spectrometry, SIFT-MS, has been used to determine the repeatability of the analysis of volatile metabolites within the breath of healthy volunteers, with emphasis on the influence of sampling methodology. Baseline instrument specific coefficients of variability for examined metabolites were as follows: acetone (1%), ammonia (1%), isoprene (2%), propanol (6%), ethanol (7%), acetic acid (7%), and hydrogen cyanide (19%). Metabolite concentration and related product ion count rate were identified as strong determinants of measurement variation. With the exception of ammonia, an orally released metabolite, variability in repeated on-line breath analysis tended to be lower for metabolites of systemic origin. Standardization of sampling technique improved the repeatability of the analysis of selected metabolites. Off-line (bag) alveolar breath sampling, as opposed to mixed (whole) breath sampling, likewise improved the repeatability of the analysis of all metabolites investigated, with the exception of acetic acid. We conclude that SIFT-MS analysis of common volatile metabolites within the breath of healthy volunteers is both reliable and repeatable. For selected metabolites, the finding that repeatability is improved through modification of sampling methodology may have implications in terms of future recommended practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号