首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Soit _boxclose{\mathcal V} un anneau de valuation discrète complet d’inégales caractéristiques (0, p), de corps résiduel parfait k, de corps des fractions K. Soient X une variété sur k, Y un ouvert de X. Nous prolongeons le théorème de pleine fidélité de Kedlaya de la manière suivante (en effet, nous ne supposons pas Y lisse): le foncteur canonique F\text-Isoc f (Y,X/K) ? F\text-Isoc f (Y,Y/K) {F\text{-}\mathrm{Isoc} ^{\dag} (Y,X/K) \to F\text{-}\mathrm{Isoc} ^{\dag} (Y,Y/K) } est pleinement fidèle. Supposons à présent Y lisse. Nous construisons la catégorie Isoc ff (Y,X/K){\mathrm{Isoc} ^{\dag\dag} (Y,X/K) } des isocristaux partiellement surcohérents sur (Y, X) dont les objets sont certains D{\mathcal D} -modules arithmétiques. De plus, nous vérifions l’équivalence de catégories sp (Y,X),+: Isoc f (Y,X/K) @ Isoc ff (Y,X/K){{\rm sp} _{(Y,X),+}: \mathrm{Isoc} ^{\dag} (Y,X/K) \cong \mathrm{Isoc} ^{\dag\dag} (Y,X/K)} .  相似文献   

2.
We will show that the factorization condition for the Fourier integral operators Ir m (X,Y;L )I_\rho ^\mu (X,Y;\it\Lambda ) leads to a parametrized parabolic Monge-Ampère equation. For an analytic operator, the fibration by the kernels of the Hessian of phase function is shown to be analytic in a number of cases, by considering a more general continuation problem for the level sets of a holomorphic mapping. The results are applied to obtain Lp-continuity for translation invariant operators in \Bbb Rn{\Bbb R}^n with n £ 4n\leq 4 and for arbitrary \Bbb Rn{\Bbb R}^n with dpX×Y|Ln+2d\pi _{X\times Y}|_\Lambda \leq n+2.  相似文献   

3.
4.
The perturbation classes problem for semi-Fredholm operators asks when the equalities SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)} and SC(X,Y)=PF-(X,Y){\mathcal{SC}(X,Y)=P\Phi_-(X,Y)} are satisfied, where SS{\mathcal{SS}} and SC{\mathcal{SC}} denote the strictly singular and the strictly cosingular operators, and PΦ+ and PΦ denote the perturbation classes for upper semi-Fredholm and lower semi-Fredholm operators. We show that, when Y is a reflexive Banach space, SS(Y*,X*)=PF+(Y*,X*){\mathcal{SS}(Y^*,X^*)=P\Phi_+(Y^*,X^*)} if and only if SC(X,Y)=PF-(X,Y),{\mathcal{SC}(X,Y)=P\Phi_-(X,Y),} and SC(Y*,X*)=PF-(Y*,X*){\mathcal{SC}(Y^*,X^*)=P\Phi_-(Y^*,X^*)} if and only if SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)}. Moreover we give examples showing that both direct implications fail in general.  相似文献   

5.
Let X be a complex Banach space and let B(X){\mathcal{B}(X)} be the space of all bounded linear operators on X. For x ? X{x \in X} and T ? B(X){T \in \mathcal{B}(X)}, let rT(x) = limsupn ? ¥ || Tnx|| 1/n{r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}} denote the local spectral radius of T at x. We prove that if j: B(X) ? B(X){\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)} is linear and surjective such that for every x ? X{x \in X} we have r T (x) = 0 if and only if rj(T)(x) = 0{r_{\varphi(T)}(x) = 0}, there exists then a nonzero complex number c such that j(T) = cT{\varphi(T) = cT} for all T ? B(X){T \in \mathcal{B}(X) }. We also prove that if Y is a complex Banach space and j:B(X) ? B(Y){\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)} is linear and invertible for which there exists B ? B(Y, X){B \in \mathcal{B}(Y, X)} such that for y ? Y{y \in Y} we have r T (By) = 0 if and only if rj( T) (y)=0{ r_{\varphi ( T) }(y)=0}, then B is invertible and there exists a nonzero complex number c such that j(T) = cB-1TB{\varphi(T) =cB^{-1}TB} for all T ? B(X){T \in \mathcal{B}(X)}.  相似文献   

6.
A class Uk1 (J){\mathcal{U}}_{\kappa 1} (J) of generalized J-inner mvf’s (matrix valued functions) W(λ) which appear as resolvent matrices for bitangential interpolation problems in the generalized Schur class of p ×q  mvf¢s Skp ×qp \times q \, {\rm mvf's}\, {\mathcal{S}}_{\kappa}^{p \times q} and some associated reproducing kernel Pontryagin spaces are studied. These spaces are used to describe the range of the linear fractional transformation TW based on W and applied to Sk2p ×q{\mathcal{S}}_{\kappa 2}^{p \times q}. Factorization formulas for mvf’s W in a subclass U°k1 (J) of Uk1(J){\mathcal{U}^{\circ}_{\kappa 1}} (J)\, {\rm of}\, {\mathcal{U}}_{\kappa 1}(J) found and then used to parametrize the set Sk1+k2p ×q ?TW [ Sk2p ×q ]{\mathcal{S}}_{{\kappa 1}+{\kappa 2}}^{p \times q} \cap T_{W} \left[ {\mathcal{S}}_{\kappa 2}^{p \times q} \right]. Applications to bitangential interpolation problems in the class Sk1+k2p ×q{\mathcal{S}}_{{\kappa 1}+{\kappa 2}}^{p \times q} will be presented elsewhere.  相似文献   

7.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

8.
We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach spaces X and to not densely defined injective sectorial operators A. A convenient tool proves to be a certain universal extrapolation space associated with A. We characterize the real interpolation space ( X,D( Aa ) ?R( Aa ) )q,p{\left( {X,\mathcal{D}{\left( {A^{\alpha } } \right)} \cap \mathcal{R}{\left( {A^{\alpha } } \right)}} \right)}_{{\theta ,p}} as
{ x  ?  X|t - q\textRea y1 ( tA )xt - q\textRea y2 ( tA )x ? L*p ( ( 0,¥ );X ) } {\left\{ {x\, \in \,X|t^{{ - \theta {\text{Re}}\alpha }} \psi _{1} {\left( {tA} \right)}x,\,t^{{ - \theta {\text{Re}}\alpha }} \psi _{2} {\left( {tA} \right)}x \in L_{*}^{p} {\left( {{\left( {0,\infty } \right)};X} \right)}} \right\}}  相似文献   

9.
In the first part of the paper we introduce the theory of bundles with negatively curved fibers. For a space X there is a forgetful map F X between bundle theories over X, which assigns to a bundle with negatively curved fibers over X its subjacent smooth bundle. Our main result states that, for certain k-spheres ${\mathbb{S}^k}In the first part of the paper we introduce the theory of bundles with negatively curved fibers. For a space X there is a forgetful map F X between bundle theories over X, which assigns to a bundle with negatively curved fibers over X its subjacent smooth bundle. Our main result states that, for certain k-spheres \mathbbSk{\mathbb{S}^k}, the forgetful map F\mathbbSk{F_{\mathbb{S}^k}} is not one-to-one. This result follows from Theorem A, which proves that the quotient map MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} is not trivial at some homotopy levels, provided the hyperbolic manifold M satisfies certain conditions. Here MET  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)} is the space of negatively curved metrics on M and T  sec < 0 (M) = MET  sec < 0 (M)/ DIFF0(M){\mathcal{T}^{\,\,sec <0 }(M) = \mathcal{MET}^{\,\,sec <0 }(M)/ {\rm DIFF}_0(M)} is, as defined in [FO2], the Teichmüller space of negatively curved metrics on M. In particular we conclude that T  sec < 0 (M){\mathcal{T}^{\,\,sec <0 }(M)} is, in general, not connected. Two remarks: (1) the nontrivial elements in pkMET  sec < 0 (M){\pi_{k}\mathcal{MET}^{\,\,sec <0 }(M)} constructed in [FO3] have trivial image by the map induced by MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} ; (2) the nonzero classes in pkT  sec < 0 (M){\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)} constructed in [FO2] are not in the image of the map induced by MET  sec < 0 (M)?T  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)\rightarrow\mathcal{T}^{\,\,sec <0 }(M)} ; the nontrivial classes in pkT  sec < 0 (M){\pi_{k}\mathcal{T}^{\,\,sec <0 }(M)} given here, besides coming from MET  sec < 0 (M){\mathcal{MET}^{\,\,sec <0 }(M)} and being harder to construct, have a different nature and genesis: the former classes – given in [FO2] – come from the existence of exotic spheres, while the latter classes – given here – arise from the non-triviality and structure of certain homotopy groups of the space of pseudo-isotopies of the circle \mathbbS1{\mathbb{S}^1}. The strength of the new techniques used here allowed us to prove also a homology version of Theorem A, which is given in Theorem B.  相似文献   

10.
We consider a connection ?X{\nabla^X} on a complex line bundle over a Riemann surface with boundary M 0, with connection 1-form X. We show that the Cauchy data space of the connection Laplacian (also called magnetic Laplacian) L : = ?X*?X + q{L := \nabla^X{^*\nabla^X} + q} , with q a complex-valued potential, uniquely determines the connection up to gauge isomorphism, and the potential q.  相似文献   

11.
We find lower bounds on the topological complexity of the critical (values) sets S(F) ì Y{\Sigma(F) \subset Y} of generic smooth maps F : XY, as well as on the complexity of the fibers F-1(y) ì X{F^{-1}(y) \subset X} in terms of the topology of X and Y, where the relevant topological invariants of X are often encoded in the geometry of some Riemannian metric supported by X.  相似文献   

12.
Let X be a Banach space with a separable dual X*. Let ${Y\subset X}Let X be a Banach space with a separable dual X*. Let Y ì X{Y\subset X} be a closed subspace, and f:Y?\mathbbR{f:Y\rightarrow\mathbb{R}} a C 1-smooth function. Then we show there is a C 1 extension of f to X.  相似文献   

13.
We study the finite sample performance of predictors in the functional (Hilbertian) autoregressive model Xn+1 = Y(Xn)+en{X_{n+1} = \Psi(X_n)+\varepsilon_n}. Our extensive empirical study based on simulated and real data reveals that predictors of the form [^(Y)](Xn){\hat\Psi(X_n)} are practically optimal in a sense that their prediction errors are comparable with those of the infeasible perfect predictor Ψ(X n ). The predictions [^(Y)](Xn){\hat\Psi(X_n)} cannot be improved by an improved estimation of Ψ, nor by a more refined prediction approach which uses predictive factors rather than the functional principal components. We also discuss the practical limits of predictions that are feasible using the functional autoregressive model. These findings have not been established by theoretical work currently available, and may serve as a practical reference to the properties of predictors of functional data.  相似文献   

14.
The final aim of this work is to prove the Central Limit Theorem described in the motivations given below. The key for that is a Resolvant estimate, of the type of Theorem 1.1 in [21], adapted for the Parabolic Green function G(X, Y) which is the heat diffusion kernel in some domain Ω in time-space: i.e. we must estimate ${\int_{\Omega}\nabla_{Y}G(X, Y)\nabla_{Y}^{2}G(Y,Z)\;dY}The final aim of this work is to prove the Central Limit Theorem described in the motivations given below. The key for that is a Resolvant estimate, of the type of Theorem 1.1 in [21], adapted for the Parabolic Green function G(X, Y) which is the heat diffusion kernel in some domain Ω in time-space: i.e. we must estimate òW?YG(X, Y)?Y2G(Y,Z)  dY{\int_{\Omega}\nabla_{Y}G(X, Y)\nabla_{Y}^{2}G(Y,Z)\;dY}. Exactly as the estimate in [21] is based on [10] our estimate here is based on the main Theorem of this paper. This main theorem refers to rough singular integrals on the Gaussian potential on ∂Ω.  相似文献   

15.
When X is a finite complex and p1X\pi_{1}X acts on \mathbbR2{\mathbb{R}}^2 by translations we give criteria involving H2X for an equivariant map F : [(X)\tilde] ? \mathbbR2F : \tilde{X} \rightarrow {\mathbb{R}}^2 to be onto. Following work of Manning and Shub, this leads to entropy bounds related to Shub’s entropy conjecture.  相似文献   

16.
Consider the model f(S(z|X)){\phi(S(z|X))} = \pmbb(z) [(X)\vec]{\pmb{\beta}(z) {\vec{X}}}, where f{\phi} is a known link function, S(·|X) is the survival function of a response Y given a covariate X, [(X)\vec]{\vec{X}} = (1, X, X 2 , . . . , X p ) and \pmbb(z){\pmb{\beta}(z)} is an unknown vector of time-dependent regression coefficients. The response is subject to left truncation and right censoring. Under this model, which reduces for special choices of f{\phi} to e.g. Cox proportional hazards model or the additive hazards model with time dependent coefficients, we study the estimation of the vector \pmbb(z){\pmb{\beta}(z)} . A least squares approach is proposed and the asymptotic properties of the proposed estimator are established. The estimator is also compared with a competing maximum likelihood based estimator by means of simulations. Finally, the method is applied to a larynx cancer data set.  相似文献   

17.
We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space X has a non-empty intersection in the visual bordification ${ \overline{X} = X \cup \partial X}We show that any filtering family of closed convex subsets of a finite-dimensional CAT(0) space X has a non-empty intersection in the visual bordification [`(X)] = X è?X{ \overline{X} = X \cup \partial X} . Using this fact, several results known for proper CAT(0) spaces may be extended to finite-dimensional spaces, including the existence of canonical fixed points at infinity for parabolic isometries, algebraic and geometric restrictions on amenable group actions, and geometric superrigidity for non-elementary actions of irreducible uniform lattices in products of locally compact groups.  相似文献   

18.
Let X \hookrightarrow[`(X)]{X \hookrightarrow \overline{X}} be an open immersion of smooth varieties over a field of characteristic p > 0 such that the complement is a simple normal crossing divisor and [`(Z)] í Z í [`(X)]{\overline{Z}\subseteq Z \subseteq \overline{X}} closed subschemes of codimension at least 2. In this paper, we prove that the canonical restriction functor between the categories of overconvergent F-isocrystals F-Isocf(X,[`(X)]) ? F-Isocf(X\Z,[`(X)]\[`(Z)]){F-{\rm Isoc}^\dagger(X,\overline{X}) \longrightarrow F-{\rm Isoc}^\dagger(X{\setminus}Z, \overline{X}{\setminus}\overline{Z})} is an equivalence of categories. We also give an application of our result to the equivalence of certain categories.  相似文献   

19.
We prove that a crepant resolution π : YX of a Ricci-flat Kähler cone X admits a complete Ricci-flat Kähler metric asymptotic to the cone metric in every Kähler class in ${H^2_c(Y,\mathbb{R})}We prove that a crepant resolution π : YX of a Ricci-flat K?hler cone X admits a complete Ricci-flat K?hler metric asymptotic to the cone metric in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A K?hler cone (X,[`(g)]){(X,\bar{g})} is a metric cone over a Sasaki manifold (S, g), i.e. ${X=C(S):=S\times\mathbb{R}_{ >0 }}${X=C(S):=S\times\mathbb{R}_{ >0 }} with [`(g)]=dr2 +r2 g{\bar{g}=dr^2 +r^2 g}, and (X,[`(g)]){(X,\bar{g})} is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat K?hler metrics on crepant resolutions p:Y? X=\mathbbCn /G{\pi:Y\rightarrow X=\mathbb{C}^n /\Gamma}, with G ì SL(n,\mathbbC){\Gamma\subset SL(n,\mathbb{C})}, due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric K?hler cone admits a Ricci-flat K?hler cone metric. It follows that if a toric K?hler cone X = C(S) admits a crepant resolution π : YX, then Y admits a T n -invariant Ricci-flat K?hler metric asymptotic to the cone metric (X,[`(g)]){(X,\bar{g})} in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.  相似文献   

20.
Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume ${\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)}Let (g, K)(k) be a CMC (vacuum) Einstein flow over a compact three-manifold Σ with non-positive Yamabe invariant (Y(Σ)). As noted by Fischer and Moncrief, the reduced volume V(k)=(\frac-k3)3Volg(k)(S){\mathcal{V}(k)=\left(\frac{-k}{3}\right)^{3}{\rm Vol}_{g(k)}(\Sigma)} is monotonically decreasing in the expanding direction and bounded below by Vinf=(\frac-16Y(S))\frac32{\mathcal{V}_{\rm \inf}=\left(\frac{-1}{6}Y(\Sigma)\right)^{\frac{3}{2}}}. Inspired by this fact we define the ground state of the manifold Σ as “the limit” of any sequence of CMC states {(g i , K i )} satisfying: (i) k i  = −3, (ii) Viˉ Vinf{\mathcal{V}_{i}\downarrow \mathcal{V}_{\rm inf}}, (iii) Q 0((g i , K i )) ≤ Λ, where Q 0 is the Bel–Robinson energy and Λ is any arbitrary positive constant. We prove that (as a geometric state) the ground state is equivalent to the Thurston geometrization of Σ. Ground states classify naturally into three types. We provide examples for each class, including a new ground state (the Double Cusp) that we analyze in detail. Finally, consider a long time and cosmologically normalized flow ([(g)\tilde],[(K)\tilde])(s)=((\frac-k3)2g,(\frac-k3)K){(\tilde{g},\tilde{K})(\sigma)=\left(\left(\frac{-k}{3}\right)^{2}g,\left(\frac{-k}{3}\right)K\right)}, where s = -ln(-k) ? [a,¥){\sigma=-\ln (-k)\in [a,\infty)}. We prove that if [(E1)\tilde]=E1(([(g)\tilde],[(K)\tilde])) £ L{\tilde{\mathcal{E}_{1}}=\mathcal{E}_{1}((\tilde{g},\tilde{K}))\leq \Lambda} (where E1=Q0+Q1{\mathcal{E}_{1}=Q_{0}+Q_{1}}, is the sum of the zero and first order Bel–Robinson energies) the flow ([(g)\tilde],[(K)\tilde])(s){(\tilde{g},\tilde{K})(\sigma)} persistently geometrizes the three-manifold Σ and the geometrization is the ground state if Vˉ Vinf{\mathcal{V}\downarrow \mathcal{V}_{\rm inf}}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号