首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hypothetical scanning (HS) is a method for calculating the absolute entropy S and free energy F from a sample generated by any simulation technique. With this approach each sample configuration is reconstructed with the help of transition probabilities (TPs) and their product leads to the configuration's probability, hence to the entropy. Recently a new way for calculating the TPs by Monte Carlo (MC) simulations has been suggested, where all system interactions are taken into account. Therefore, this method--called HSMC--is in principle exact where the only approximation is due to insufficient sampling. HSMC has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks on a lattice, and peptides. Because molecular dynamics (MD) is considered to be significantly more efficient than MC for a compact polymer chain, in this paper HSMC is extended to MD simulations as applied to peptides. Like before, we study decaglycine in vacuum but for the first time also a peptide with side chains, (Val)(2)(Gly)(6)(Val)(2). The transition from MC to MD requires implementing essential changes in the reconstruction process of HSMD. Results are calculated for three microstates, helix, extended, and hairpin. HSMD leads to very stable differences in entropy TDeltaS between these microstates with small errors of 0.1-0.2 kcal/mol (T=100 K) for a wide range of calculation parameters with extremely high efficiency. Various aspects of HSMD and plans for future work are discussed.  相似文献   

2.
The eight-residue surface loop, 45-52 (Ser, Ala, Val, Gly, Asn, Ala, Glu, Ser), of the homotetrameric protein streptavidin has a "closed" conformation in the streptavidin-biotin complex, where the corresponding binding affinity is one of the strongest found in nature (ΔG ~ -18 kcal∕mol). However, in most of the crystal structures of apo (unbound) streptavidin, the loop conformation is "open" and typically exhibits partial disorder and high B-factors. Thus, it is plausible to assume that the loop structure is changed from open to closed upon binding of biotin, and the corresponding difference in free energy, ΔF = F(open) - F(closed) in the unbound protein, should therefore be considered in the total absolute free energy of binding. ΔF (which has generally been neglected) is calculated here using our "hypothetical scanning molecular-dynamics" (HSMD) method. We use a protein model in which only the atoms closest to the loop are considered (the "template") and they are fixed in the x-ray coordinates of the free protein; the x-ray conformation of the closed loop is attached to the same (unbound) template and both systems are capped with the same sphere of TIP3P water. Using the force field of the assisted model building with energy refinement (AMBER), we carry out two separate MD simulations (at temperature T = 300 K), starting from the open and closed conformations, where only the atoms of the loop and water are allowed to move (the template-water and template-loop interactions are considered). The absolute F(open) and F(closed) (of loop + water) are calculated from these trajectories, where the loop and water contributions are obtained by HSMD and a thermodynamic integration (TI) process, respectively. The combined HSMD-TI procedure leads to total (loop + water) ΔF = -27.1 ± 2.0 kcal∕mol, where the entropy TΔS constitutes 34% of ΔF, meaning that the effect of S is significant and should not be ignored. Also, ΔS is positive, in accord with the high flexibility of the open loop observed in crystal structures, while the energy ΔE is unexpectedly negative, thus also adding to the stability of the open loop. The loop and the 250 capped water molecules are the largest system studied thus far, which constitutes a test for the efficiency of HSMD-TI; this efficiency and technical issues related to the implementation of the method are also discussed. Finally, the result for ΔF is a prediction that will be considered in the calculation of the absolute free energy of binding of biotin to streptavidin, which constitutes our next project.  相似文献   

3.
A new approach, the hypothetical scanning Monte Carlo (HSMC), for calculating the absolute entropy, S, and free energy, F, has been introduced recently and applied first to fluids (argon and water) and later to peptides. In this paper the method is further developed for peptide chains in vacuum. S is calculated from a given MC sample by reconstructing each sample conformation i step-by-step, i.e., calculating transition probabilities (TPs) for the dihedral and bond angles and fixing the related atoms at their positions. At step k of the process the chain's coordinates that have already been determined are kept fixed (the "frozen past") and TP(k) is obtained from a MC simulation of the "future" part of the chain whose TPs as yet have not been determined; when the process is completed the contribution of conformation i to the entropy is, S(i) approximately -ln Pi(k) TP(k). In a recent paper we studied polyglycine chains, modeled by the AMBER force field with constant bond lengths and bond angles (the rigid model). Decaglycine [(Gly)(10)] was studied in the helical, extended, and hairpin microstates, while (Gly)(16) was treated only in the first two microstates. In this paper the samples are increased and restudied, (Gly)(16) is also investigated in the hairpin microstate, and for (Gly)(10) approximations are tested where only part of the future is considered for calculating the TPs. We calculate upper and lower bounds for F and demonstrate that like for fluids, F can be obtained from multiple reconstructions of a single conformation. We also test a more realistic model of (Gly)(10) where the bond angles are allowed to move (the flexible model). Very accurate results for S and F are obtained which are compared to results obtained by the quasiharmonic approximation and the local states method. Thus, differences in entropy and free energy between the three microstates are obtained within errors of 0.1-0.3 kcal/mol. The HSMC method can be applied to a macromolecule with any degree of flexibility, ranging from local fluctuations to a random coil. The present results demonstrate that the difference in stability, DeltaF(mn)=F(m)-F(n) between significantly different microstates m and n, can be obtained from two simulations only without the need to resort to thermodynamic integration. Our long-term goal is to extend this method to any peptide and apply it to a peptide immersed in a box with explicit water.  相似文献   

4.
The hypothetical scanning molecular dynamics (HSMD) method is used here for calculating the absolute free energy of binding, ΔA(0) of the complex of the protein FKBP12 with the ligand SB2 (also denoted L8) - a system that has been studied previously for comparing the performance of different methods. Our preliminary study suggests that considering long-range electrostatics is imperative even for a hydrophobic ligand such as L8. Therefore the system is modeled by the AMBER force field using Particle Mesh Ewald (PME). HSMD consists of three stages applied to both the ligand-solvent and ligand-protein systems. (1) A small set of system configurations (frames) is extracted from an MD trajectory. (2) The entropy of the ligand in each frame is calculated by a reconstruction procedure. (3) The contribution of water and protein to ΔA(0) is calculated for each frame by gradually increasing the ligand-environment interactions from zero to their full value using thermodynamic integration (TI). Unlike the conventional methods, the structure of the ligand is kept fixed during TI, and HSMD is thus free from the end-point problem encountered with the double annihilation method (DAM); therefore, the need for applying restraints is avoided. Furthermore, unlike the conventional methods, the entropy of the ligand and water is obtained directly as a byproduct of the simulation. In this paper, in addition to the difference in the internal entropies of the ligand in the two environments, we calculate for the first time the external entropy of the ligand, which provides a measure for the size of the active site. We obtain ΔA(0) = -10.7 ±1.0 as compared to the experimental values -10.9 and -10.6 kcal/mol. However, a protein/water system treated by periodic boundary conditions grows significantly with increasing protein size and the computation of ΔA(0) would become expensive by all methods. Therefore, we also apply HSMD to FKBP12-L8 described by the GSBP/SSBP model of Roux's group (implemented in the software CHARMM) where only part of the protein and water around the active site are considered and long-range electrostatic effects are taken into account. For comparison this model was also treated by the double decoupling method (DDM). The two methods have led to comparable results for ΔA(0) which are somewhat lower than the experimental value. The ligand was found to be more confined in the active site described by GSBP/SSBP than by PME where its entropy in solvent is larger than in the active site by 1.7 and by 5.5 kcal/mol, respectively.  相似文献   

5.
Estimating protein-protein interaction energies is a very challenging task for current simulation protocols. Here, absolute binding free energies are reported for the complex H-Ras/C-Raf1 using the MM-PB(GB)SA approach, testing the internal consistency and model dependence of the results. Averaging gas-phase energies (MM), solvation free energies as determined by Generalized Born models (GB/SA), and entropic contributions calculated by normal mode analysis for snapshots obtained from 10 ns explicit-solvent molecular dynamics in general results in an overestimation of the binding affinity when a solvent-accessible surface area-dependent model is used to estimate the nonpolar solvation contribution. Applying the sum of a cavity solvation free energy and explicitly modeled solute-solvent van der Waals interaction energies instead provides less negative estimates for the nonpolar solvation contribution. When the polar contribution to the solvation free energy is determined by solving the Poisson-Boltzmann equation (PB) instead, the calculated binding affinity strongly depends on the atomic radii set chosen. For three GB models investigated, different absolute deviations from PB energies were found for the unbound proteins and the complex. As an alternative to normal-mode calculations, quasiharmonic analyses have been performed to estimate entropic contributions due to changes of solute flexibility upon binding. However, such entropy estimates do not converge after 10 ns of simulation time, indicating that sampling issues may limit the applicability of this approach. Finally, binding free energies estimated from snapshots of the unbound proteins extracted from the complex trajectory result in an underestimate of binding affinity. This points to the need to exercise caution in applying the computationally cheaper "one-trajectory-alternative" to systems where there may be significant changes in flexibility and structure due to binding. The best estimate for the binding free energy of Ras-Raf obtained in this study of -8.3 kcal mol(-1) is in good agreement with the experimental result of -9.6 kcal mol(-1), however, further probing the transferability of the applied protocol that led to this result is necessary.  相似文献   

6.
7.
Implicit solvation models are commonly optimized with respect to experimental data or Poisson-Boltzmann (PB) results obtained for small molecules, where the force field is sometimes not considered. In previous studies, we have developed an optimization procedure for cyclic peptides and surface loops in proteins based on the entire system studied and the specific force field used. Thus, the loop has been modeled by the simplified solvation function E(tot) = E(FF) (epsilon = 2r) + Sigma(i) sigma(i)A(i), where E(FF) (epsilon = nr) is the AMBER force field energy with a distance-dependent dielectric function, epsilon = nr, A(i) is the solvent accessible surface area of atom i, and sigma(i) is its atomic solvation parameter. During the optimization process, the loop is free to move while the protein template is held fixed in its X-ray structure. To improve on the results of this model, in the present work we apply our optimization procedure to the physically more rigorous solvation model, the generalized Born with surface area (GB/SA) (together with the all-atom AMBER force field) as suggested by Still and co-workers (J. Phys. Chem. A 1997, 101, 3005). The six parameters of the GB/SA model, namely, P(1)-P(5) and the surface area parameter, sigma (programmed in the TINKER package) are reoptimized for a "training" group of nine loops, and a best-fit set is defined from the individual sets of optimized parameters. The best-fit set and Still's original set of parameters (where Lys, Arg, His, Glu, and Asp are charged or neutralized) were applied to the training group as well as to a "test" group of seven loops, and the energy gaps and the corresponding RMSD values were calculated. These GB/SA results based on the three sets of parameters have been found to be comparable; surprisingly, however, they are somewhat inferior (e.g, of larger energy gaps) to those obtained previously from the simplified model described above. We discuss recent results for loops obtained by other solvation models and potential directions for future studies.  相似文献   

8.
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.  相似文献   

9.
The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy, S, and free energy, F, by analyzing Boltzmann samples obtained by Monte Carlo (MC) or molecular dynamics (MD) techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). With our recent version of HS, called HSMC-EV, each TP is calculated from MC simulations, where the simulated particles are excluded from the volume reconstructed in previous steps. In this paper we remove the excluded volume (EV) restriction, replacing it by a "free volume" (FV) approach. For liquid argon, HSMC-FV leads to an improvement in efficiency over HSMC-EV by a factor of 2-3. Importantly, the FV treatment greatly simplifies the HS implementation for liquids, allowing a much more natural application of the method for MD simulations. Given the success and popularity of MD, the present development of the HSMD method for liquids is an important advancement for HS methodology. Results for the HSMD-FV approach presented here agree well with our HSMC and thermodynamic integration results. The efficiency of HSMD-FV is equivalent to HSMC-EV. The potential use of HSMC(MD)-FV in protein systems with explicit water is discussed.  相似文献   

10.
Implicit solvent models are important for many biomolecular simulations. The polarity of aqueous solvent is essential and qualitatively captured by continuum electrostatics methods like Generalized Born (GB). However, GB does not account for the solvent‐induced interactions between exposed hydrophobic sidechains or solute‐solvent dispersion interactions. These “nonpolar” effects are often modeled through surface area (SA) energy terms, which lack realism, create mathematical singularities, and have a many‐body character. We have explored an alternate, Lazaridis–Karplus (LK) gaussian energy density for nonpolar effects and a dispersion (DI) energy term proposed earlier, associated with GB electrostatics. We parameterized several combinations of GB, SA, LK, and DI energy terms, to reproduce 62 small molecule solvation free energies, 387 protein stability changes due to point mutations, and the structures of 8 protein loops. With optimized parameters, the models all gave similar results, with GBLK and GBDILK giving no performance loss compared to GBSA, and mean errors of 1.7 kcal/mol for the stability changes and 2 Å deviations for the loop conformations. The optimized GBLK model gave poor results in MD of the Trpcage mini‐protein, but parameters optimized specifically for MD performed well for Trpcage and three other small proteins. Overall, the LK and DI nonpolar terms are valid alternatives to SA treatments for a range of applications. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
Carbohydrate-protein interactions have been investigated for a model system of a monoclonal antibody, SYA/J6, which binds a trisaccharide epitope of the O-polysaccharide of the Shigella flexneri variant Y lipopolysaccharide. The thermodynamics of binding for the methyl glycoside of the native trisaccharide epitope, Rha-Rha-GlcNAc () to SYA/J6 over a range of temperatures exhibits strong, linear enthalpy-entropy compensation and a negative heat capacity change (DeltaC(p)=-152 cal mol(-1) degree(-1)). At 293 K the free energy of association is the sum of favourable enthalpy and entropy contributions (DeltaH=-3.9 kcal mol(-1) and -TDeltaS=-2.9 kcal mol(-1)). Crystal structures for SYA/J6 Fab detailed the position of the native trisaccharide epitope, Rha-Rha-GlcNAc, and facilitated a strategy to design a tighter binding, low molecular weight ligand. This involved pre-organization of the native trisaccharide in its bound conformation by addition of intramolecular constraints (a beta-alanyl or glycinyl tether). ELISA measurements indicated that the glycinyl tethered trisaccharide was not an optimal candidate for further analysis, while microcalorimetry provided data showing that the beta-alanyl tethered trisaccharide displayed a 15-fold increase in affinity for SYA/J6. Tethering resulted in a favourable entropic contribution to binding, relative to the native trisaccharide (-TDeltaDeltaS=-1.2 kcal mol(-1)). Potential energy and dynamics calculations using the AMBER Plus force fields indicated that trisaccharide adopted a rigid conformation similar to that of the bound conformation of the native trisaccharide epitope. While this strategy resulted in modest free energy gains by minimizing losses due to conformational entropy, thermodynamic data are consistent with significant contributions from solvent reorganization.  相似文献   

12.
In the later stages of drug design projects, accurately predicting relative binding affinities of chemically similar compounds to a biomolecular target is of utmost importance for making decisions based on the ranking of such compounds. So far, the extensive application of binding free energy approaches has been hampered by the complex and time‐consuming setup of such calculations. We introduce the free energy workflow (FEW) tool that facilitates setup and execution of binding free energy calculations with the AMBER suite for multiple ligands. FEW allows performing free energy calculations according to the implicit solvent molecular mechanics (MM‐PB(GB)SA), the linear interaction energy, and the thermodynamic integration approaches. We describe the tool's architecture and functionality and demonstrate in a show case study on Factor Xa inhibitors that the time needed for the preparation and analysis of free energy calculations is considerably reduced with FEW compared to a fully manual procedure. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Solvated interaction energy (SIE) is an end-point physics-based scoring function for predicting binding affinities from force-field nonbonded interaction terms, continuum solvation, and configurational entropy linear compensation. We tested the SIE function in the Community Structure-Activity Resource (CSAR) scoring challenge consisting of high-resolution cocrystal structures for 343 protein-ligand complexes with high-quality binding affinity data and high diversity with respect to protein targets. Particular emphasis was placed on the sensitivity of SIE predictions to the assignment of protonation and tautomeric states in the complex and the treatment of metal ions near the protein-ligand interface. These were manually curated from an originally distributed CSAR-HiQ data set version, leading to the currently distributed CSAR-NRC-HiQ version. We found that this manual curation was a critical step for accurately testing the performance of the SIE function. The standard SIE parametrization, previously calibrated on an independent data set, predicted absolute binding affinities with a mean-unsigned-error (MUE) of 2.41 kcal/mol for the CSAR-HiQ version, which improved to 1.98 kcal/mol for the upgraded CSAR-NRC-HiQ version. Half-half retraining-testing of SIE parameters on two predefined subsets of CSAR-NRC-HiQ led to only marginal further improvements to an MUE of 1.83 kcal/mol. Hence, we do not recommend altering the current default parameters of SIE at this time. For a sample of SIE outliers, additional calculations by molecular dynamics-based SIE averaging with or without incorporation of ligand strain, by MM-PB(GB)/SA methods with or without entropic estimates, or even by the linear interaction energy (LIE) formalism with an explicit solvent model, did not further improve predictions.  相似文献   

14.
《Tetrahedron letters》1995,36(18):3185-3188
MM2 and AMBER force fields in both vacuum and GB/SA solvation model were examined to find the most effective method for elucidating the conformational properties of the trisaccharide 2, which is essential to the elicitor activity of hexa-β-D-glucopyranosyl-D-glucitol (1). The NMR studies reveal that the combination of AMBER force field and GB/SA solvation treatment is quite effective in analyzing the conformation of oliosaccharide in water.  相似文献   

15.
The molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and MM-generalized-Born surface area (MM-GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters. Atomic charge methods are demonstrated to effect both the molecular dynamics (MD) simulation and MM-PB(GB)SA binding energy calculation, with a greater effect on the MD simulation. Coefficients of determination and Spearman rank coefficients were used to quantify the performance of the MM-PB(GB)SA methods relative to the experimental data. In general, better performance was achieved using (i) atomic charge models that produced smaller mean absolute atomic charges (Gasteiger, HF/STO-3G and B3LYP/cc-pVTZ), (ii) the MM-GBSA approach over MM-PBSA, while (iii) inclusion of entropy had a slightly positive effect on correlations with experiment. Accurate representation of the ligand protonation state was found to be important. It is demonstrated that these approaches can distinguish ligands according to binding strength, underlining the usefulness of these approaches in computer-aided drug design. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The sensitivity of aqueous solvation free energies (SFEs), estimated using the GB/SA continuum solvent model, on charge sets, protocols, and force fields, was studied. Simple energy calculations using the GB/SA solvent model were performed on 11 monofunctional organic compounds. Results indicate that calculated SFEs are strongly dependent on the charge sets. Charges derived from electrostatic potential fitting to high level ab initio wave functions using the CHELPG procedure and “class IV” charges from AM1/CM1a or PM3/CM1p calculations yielded better results than the corresponding Mulliken charges. Calculated SFEs were similar to MC/FEP energies obtained in the presence of explicit TIP4P water. Further improvements were obtained by using GVB/6-31G** and MP2/6-31+G** (CHELPG) charge sets that included correlation effects. SFEs calculated using charge sets assigned by the OPLSA* force field gave the best results of all standard force fields (MM2*, MM3*, MMFF, AMBER*, and OPLSA*) implemented in MacroModel. Comparison of relative and absolute SFEs computed using either the GB/SA continuum model or MC/FEP calculations in the presence of explicit TIP4P water showed that, in general, relative SFEs can be estimated with greater accuracy. A second set of 20 mono- and difunctional molecules was also studied and relative SFEs estimated using energy minimization and thermodynamic cycle perturbation (TCP) protocols. SFEs calculated from TCP calculations using the GB/SA model were sensitive to bond lengths of dummy bonds (i.e., bonds involving dummy atoms). In such cases, keeping the bond lengths of dummy bonds close to the corresponding bond lengths of the starting structures improved the agreement of TCP-calculated SFEs with energy minimization results. Overall, these results indicate that GB/SA solvation free energy estimates from simple energy minimization calculations are of similar accuracy and value to those obtained using more elaborate TCP protocols. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 769–780, 1998  相似文献   

17.
Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R(2) of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R(2) of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R(2) of 0.57, when using the rotatable bond entropy estimate.  相似文献   

18.
A new generalized Born model for estimating the free energy of hydration is presented. The new generalized Born/volume integral (GB/VI) estimates the free energy of hydration as a classical electrostatic energy plus a cavitation energy that is not based upon atomic surface area (SA) used in GB/SA hydration models but on a VI London dispersion energy estimated from quantities already calculated in the classical electrostatic energy. The (relatively few) GB/VI model parameters are fitted to experimental data, and parameterizations for two different atomic partial charge models are presented. Comparison of the calculated and experimental free energies of hydration for 560 small molecules (both neutral and charged) shows good agreement (r(2) = 0.94).  相似文献   

19.
A comparative analysis is provided of the effect of different solvent models on the calculation of a potential of mean force (PMF) for determining the absolute binding affinity of the small molecule inhibitor pteroic acid bound to ricin toxin A-chain (RTA). Solvent models include the distance-dependent dielectric constant, several different generalized Born (GB) approximations, and a hybrid explicit/GB-based implicit solvent model. We found that the simpler approximation of dielectric screening and a GB model, with Born radii fitted to a switching-window dielectric-boundary surface Poisson solvent model, severely overpredicted the binding affinity as compared to the experimental value, estimated to range from -4.4 to -6.0 kcal/mol. In contrast, GB models that are parametrized to fit the Lee-Richards molecular surface performed much better, predicting binding free energy within 1-3 kcal/mol of experimental estimates. However, the predicted free-energy profiles of these GB models displayed alternative binding modes not observed in the crystal structure. Finally, the most rigorous and computationally costly approach in this work, which used a hybrid explicit/implicit solvent model, correctly determined a binding funnel in the PMF near the crystallographic bound state and predicted an absolute binding affinity that was 2 kcal/mol more favorable than the estimated experimental binding affinity.  相似文献   

20.
The conformational energies required for ligands to adopt their bioactive conformations were calculated for 33 ligand–protein complexes including 28 different ligands. In order to monitor the force field dependence of the results, two force fields, MM3 and AMBER, were employed for the calculations. Conformational analyses were performed in vacuo and in aqueous solution by using the generalized Born/solvent accessible surface (GB/SA) solvation model. The protein-bound conformations were relaxed by using flat-bottomed Cartesian constraints. For about 70% of the ligand–protein complexes studied, the conformational energies of the bioactive conformations were calculated to be 3 kcal/mol. It is demonstrated that the aqueous conformational ensemble for the unbound ligand must be used as a reference state in this type of calculations. The calculations for the ligand–protein complexes with conformational energy penalties of the ligand calculated to be larger than 3 kcal/mol suffer from uncertainties in the interpretation of the experimental data or limitations of the computational methods. For example, in the case of long-chain flexible ligands (e.g. fatty acids), it is demonstrated that several conformations may be found which are very similar to the conformation determined by X-ray crystallography and which display significantly lower conformational energy penalties for binding than obtained by using the experimental conformation. For strongly polar molecules, e.g. amino acids, the results indicate that further developments of the force fields and of the dielectric continuum solvation model are required for reliable calculations on the conformational properties of this type of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号