首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have fabricated SiGe quantum dots (QDs) by means of a two-step Si ion implantation followed by thermal rapid thermal annealing (RTA) method. SiGe QDs with the 4–6 nm diameter are formed uniformly in the near-surface region of Ge substrate. The RTA processes are performed at 800 and 900 °C for 15 s, respectively. Both experimental and theoretical analysis indicates that the higher temperature (900 °C) RTA can enhance the growth of SiGe QDs. Two photoluminescence peaks are observed near 572 and 581 nm at room temperature. The mechanism of the luminescence from SiGe QDs is discussed.  相似文献   

2.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

3.
We have investigated the effect of post growth rapid thermal annealing on self-assembled InAs/GaAs multilayer QDs (MQD) overgrown with a combination barrier of InAlGaAs and GaAs for their possible use in photovoltaic device application. The samples were characterized by transmission electron microscopy and photoluminescence measurements. We noticed a thermally induced material interdiffusion between the QDs and the wetting layer in the MQD sample up to a certain annealing temperature. The QD heterostructure exhibited a thermal stability in the emission peak wavelength on annealing up to 700 °C temperature. A phenomenological model has been proposed for this stability of the emission peak. The model considers the effect of the strain field, propagating from the underlying QD layer to the upper layers of the multilayer QD and the effect of indium atom gradient in the combination barrier layer due to the presence of a quaternary InAlGaAs layer.  相似文献   

4.
《光谱学快报》2013,46(5-6):487-499
Although the dosimetric Electron Spin Resonance (ESR) signal of hard tissues, particularly enamel, has been extensively studied, little attention has been paid to the native signal. This signal is known to be affected by the health of the tissue, as well as by socio–economic factors. In dental applications several clinical procedures, including the use of laser irradiation, can heat the tissue locally with side effects that must be studied. The purpose of the present work is to study the ESR signals in enamel and dentin tissues after thermal treatment with temperatures in the range of 100°C–300°C. Non‐irradiated permanent bovine teeth were studied. ESR measurements were performed with a Varian E‐4 ESR spectrometer operating in the X band range. Progressively larger ESR signals were produced in dentin tissues previously heat treated at and above 100°C. No detectable signals were observed in similarly treated enamel. The signal shows partial decay at four and six months after thermal treatment. The experimental data for dentin show a correlation with the Arrhenius function with an activation energy of (41 ± 2)103 J/mol. After six months, the ESR signal shows a higher activation energy (67 ± 3)103 J/mol and the decay shows a activation energy of (38 ± 2)103 J/mol. A possible assignment of the signal origin in dentin is difficult. The water lost during thermal treatment and reincorporated during the following six months correlates with the signal gain and subsequent decay. The water lost can produce point defects in the hydroxyapatite, or structural changes in the collagen structure. The results observed here are useful for understanding the thermal effects produced in dentin by infrared laser irradiation, and provides a cautionary warning that annealing conditions in ESR studies of biological tissues should be standardized.  相似文献   

5.
Abstract

This article introduces a new design for a bi-directional optical sub-assembly for fiber-optic gyroscope applications that integrates a super-luminescent light-emitting diode, a photodiode, a beam splitter, an isolator, a fiber receptacle, and a thermal electric cooler. It is less than 1.5 cm in diameter and 2.5 cm in height. As chip temperature was kept at 30°C under environment temperature of ?35°C, 25°C, and 75°C, the bi-directional optical sub-assembly reached stability at a center wavelength of 1,539 nm and a wavelength shift of 1.5 nm. A 3D simple model with the finite-element method was used to analyze thermal performance.  相似文献   

6.
Bismuth nanodroplets on GaAs substrate were obtained by metalorganic vapor phase epitaxy (MOVPE). New products have been synthesized when Bi nanodroplets are heated under oxygen atmosphere. The oxidation process of Bi nanodroplets consists of a heating from the room temperature to different oxidation temperatures (350, 500, 600 °C) with a temperature rate of 14 °C/min. The annealing duration was fixed to 30 min. The presence of oxygen in the products was confirmed by energy dispersive X-ray (EDX) measurements using a scanning electron microscope (SEM). SEM images show that Bi microcomposites density decrease and their size increases with increasing annealing temperature. After X-ray diffraction analysis of the products no obvious peaks could be observed. The reflectance spectra of the products were studied in spectral domains ranged from 200 nm to 1100 nm. By fitting the reflectivity signal, we extracted the thickness of the products and their refractive index variation versus wavelength. The results show that the thickness of the samples increases with increasing annealing temperature. The photoluminescence (PL) spectra under excitation at 325 nm shows a broad emission centered at around 1.92 eV.  相似文献   

7.
The spectral and structural characteristics of lithium borate glasses containing europium and aluminum have been investigated upon annealing at different temperatures. It has been found that the spectral characteristics of the studied system change nonmonotonically with an increase in the annealing temperature. After annealing at a temperature of 600°C, the luminescence spectra of the glasses exhibit broad structureless bands that are specific for the amorphous phase containing Eu3+ ions. Then, after annealing at T = 700°C, narrow lines appear in the wavelength ranges 585–595 and 610–620 nm, which correspond to the luminescence of the Eu(BO2)3 and EuAl3(BO3)4 borates. A further increase in the annealing temperature (T = 800–900°C) leads to the disappearance of europium aluminum borate. In the luminescence spectra of these samples, there are narrow bands in the wavelength range λ = 585–595 nm, which are typical of europium metaborate. Finally, at a temperature of 1050°C, these bands disappear and narrow lines appear again in the wavelength range 610–620 nm, which are characteristic of the EuAl3(BO3)4 borate. Thus, the temperature annealing makes it possible to purposely change the spectral characteristics of the studied system in the wavelength range 590–615 nm.  相似文献   

8.
We report an all-solid-state tunable CW orange laser based on single-pass sum-frequency generation in step-chirped PPMgO: LN crystal. Two laser sources, a tunable laser (1550 nm) and an ASE laser (1525–1650 nm) are used interchangeably as pumps and mixed with a fixed 975 nm signal laser. Up to 4.3 mW at 597 nm is generated corresponding to 0.87% nonlinear conversion efficiency and the beam quality (M2) value of about 2.5 is measured. The output wavelength can be tuned up to?~?5.66 nm by varying the position of focusing inside the crystal and by temperature, which makes possible the practical application of our device for wavelength selection and diversity in the orange spectral range.  相似文献   

9.
This study presents a simple Mach–Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are ??0.54 nm mε?1 and 0.058 nm °C?1, and ??0.53 nm mε?1 and 0.055 nm °C?1 to strain and temperature, respectively. The depth sensitivities are ??3.3 dB mε??1, ? 0.015 dB °C?1 and ?5.8 dB mε?1, and 0.06 dB °C?1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.  相似文献   

10.
Nanosize zinc ferrite particles, prepared by nitrate method, were investigated by XRD, TEM, 57Fe Mössbauer spectroscopy and VSM. The average particle size in this system varies from 10 to 62 nm as the sintering temperature increases from 300°C to 1,000°C. The lattice parameters in this system are almost constant at a value of ~8.41 Å. The Mössbauer spectra of all the sintered samples show a single doublet. The Mössbauer hyperfine parameters show little change with the change of sintering temperature. The doublets are ascribed to the presence of superparamagnetism in this system, which is also corroborated by the VSM measurements.  相似文献   

11.
An all-fiber dual-parameter sensor based on cascaded long period grating pair fabricated by femtosecond laser and CO2 laser has been proposed and realized both theoretically and experimentally. The resonant wavelengths of LPFGs are 1557.80 nm and 1590.88 nm. In the strain range of 0–400 με, strain sensitivities are ?7.2 pm/με for C-LPFG and ?1.6 pm/με for F-LPFG. In the temperature range of 30–70°C, temperature sensitivities are ?41.1 pm/°C for C-LPFG and ?21.2 pm/°C for F-LPFG. By analyzing the resonant wavelength characterization, the proposed sensor can be efficiently used for dual-parameters measurement with promising application prospect and great research reference value.  相似文献   

12.
The CdSe quantum dots (QDs) capped with 2-mercaptonicotinic acid (H2MN) were prepared through a controllable process at 80 °C. The prepared QDs were characterized by XRD, TEM, IR, UV–Vis and fluorescence (FL) techniques. It was found that the QDs were nearly mono-disperse with the diameters in the range of 8–10 nm. These QDs are capable to exhibit strong FL even in concentrated acidic media. They exhibit an enhanced fluorescence in the presence of Cr(VI), which was used for the determination of Cr(VI) in water samples. The linear range was found to be 1?×?10?7–6.0?×?10?6 M with the RSD and DL of 0.92 % and 5?×?10?8 M, respectively. Except that Ca2+ and Fe3+ which can be eliminated through a simple precipitation process, the other co-existent ions present in natural water were not interfered. The recoveries obtained for the added amounts of Cr(VI) were in the range of 96.9–103.2 %, which denote on application of the method, satisfactorily.  相似文献   

13.
Accurate and sensitive nanoscale thermal probing for thermophysical property characterization is appealing but still a challenge to date. Previous studies have revealed that graphene quantum dots (GQDs) are good temperature markers for their small dimension and superior fluorescence excitation. In this work, we show that the thermal response of fluorescence spectrum of GQDs is strongly pH-dependent. Significant decrease (about 56% to 30%) for temperatureinduced intensity reduction within a small range of 75°C under different excitation wavelengths of 370 nm, 390 nm, and 410 nm is observed as pH value increases from pH = 1 to pH = 13. The temperature coefficients of peak wavelength change from positive to negative with the increase of pH value, meaning that the blue shift happens as the condition is changed from acidity to alkalinity. Temperature dependence of peak width is also studied with the largest coefficient of 0.2255nm/°C, which is remarkable. These suggest that when using GQDs in nanoscale thermal probing, the pH value is an important factor that should be considered besides the excitation wavelength. Regarding the superior biocompatibility and low cytotoxicity, GQDs could play an important role in thermal probing or mapping in a complex biology system such as a cell, and help to develop novel treatments and diagnoses.  相似文献   

14.
Ridge-waveguide InGaAsN triple-quantum-well strain-compensated lasers grown by metal organic chemical vapor deposition were fabricated with pulsed anodic oxidation. The laser’s output power reached 145 mW in continuous-wave mode at room temperature for a 4-?m -stripe-width laser. Continuous-wave single longitudinal mode operation was maintained at a high injection current level with a wavelength of 1287.3 nm at room temperature. Single longitudinal mode operation at 1317.2 nm was achieved at twice the threshold current at 100 °C. The band gap of InGaAsN in the quantum wells at different temperatures was calculated and compared to the measured temperature-dependent laser wavelength.  相似文献   

15.
4-dimethylaminopyridinium salicylate monohydrate (DMAPSA) was synthesized and its crystal structure was determined using single crystal X-ray diffraction analysis. From the crystal structure analysis it can be inferred that the crystal belongs to monoclinic system with space group of P21/n. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by FTIR spectral studies. 1H and 13C FT–NMR has been recorded to elucidate the molecular structure. The molecular mass of DMAPSA has been measured using mass spectroscopic analysis. The thermal stability and thermal decomposition of DMAPSA have been investigated by means of thermogravimetric analysis and differential thermal analysis. The melting point of crystal was observed as 172 °C by melting point apparatus. Fluorescence spectra were taken for the excitation wavelength of 240 nm.  相似文献   

16.
Transparent conductive tin-doped indium oxide (In2O3:Sn, ITO) thin films with various Sn-doping concentrations have been prepared using the low cost reactive thermal evaporation (RTE) technique at a low growth temperature of ~160 °C. The structural characteristics, optical and electrical properties of the ITO thin films were investigated. These polycrystalline ITO films exhibited preferential orientation along (222) plane and possessed low resistivities ranging from 3.51 to 5.71 × 10?4 Ω cm. The decreased mobility was attributed to the scattering by ionized and neutral impurities at high doping concentrations. The optimized ITO thin film deposited with 6.0 wt% Sn-doping concentration exhibited a high average transparency of 87 % in the wavelength range of 380–900 nm and a low resistivity of 3.74 × 10?4 Ω cm with a high Hall mobility of 47 cm2 V?1s?1. A hydrogenated amorphous silicon and silicon–germanium (a-Si:H/a-SiGe:H) double-junction solar cell fabricated with the RTE-grown ITO electrodes presented a conversion efficiency of 10.51 %.  相似文献   

17.
To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7–17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of structure of CdSe (hexagonal) and CdTe (zinc blende).  相似文献   

18.
The optical property and the magneto-optical response were space-selectively modified in transparent Fe3+- and Au3+-doped glasses by using infrared femtosecond- (fs-) laser irradiation and subsequent annealing. This irradiation process induces the precipitation of not only magnetic spinel-type Fe-oxide nanoparticles but also Au nanoparticles inside the glasses, which shows localized surface plasmon resonance absorption at the wavelengths larger than 500 nm. As the annealing time and the temperature increases, the position of the LSPR peaks exhibits red shifts, which is due to the growth of Au nanoparticles. Faraday rotation angles as a function of wavelength were measured, and the difference spectra exhibit distinct positive peaks, indicating that the coupling between the LSPR due to the Au nanoparticles and the diamagnetism of the matrix glass is effective. To decrease the coupling with the diamagnetic glass, a two-step annealing process (at 450 °C for 90 min and at 550 °C for 30 min) was carried out after irradiation with fs-laser. The preliminary annealing at the lower temperature contributes to the precipitation of ferrimagnetic magnetite nanoparticles. Au nanoparticles were subsequently grown by annealing at 550 °C. In this case, effective coupling between the LSPR and ferrimagnetic nanoparticles has significantly suppressed the intensity of the positive peak in the Faraday spectra compared with the single annealing process.  相似文献   

19.
Fine Co and Pt nanoparticles are nucleated when a silica sample is implanted with 400 keV Co+ and 1370 keV Pt+ ions. At the implanted range, Co and Pt react to form small Co x Pt(1?x) nanoparticles during Si+ ion irradiation at 300 °C. Thermal annealing of the pre-implanted silica substrate at 1000 °C results in the formation of spherical nanoparticles of various sizes. When irradiated with Si+ ions at 300 °C, particles in the size range of 5–17 nm undergo rod-like shape transformation with an elongation in the direction of the incident ion beam, while those particles in the size range of 17–26 nm turn into elliptical shape. Moreover, it is suspected that very big nanoparticles (size >26 nm) decrease in size, while small nanoparticles (size <5 nm) do not undergo any transformation. During Si+ ion irradiation, the crystalline nature of the nanoparticles is preserved. The results are discussed in the light of the thermal spike model.  相似文献   

20.
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号