首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The M1 and M2 transition strength distribution for 16O in the excitation energy range from 16 to 20 MeV has been measured in a high-resolution electron scattering experiment. The M1 strength is concentrated in three sharp states at Ex = 16.22, 17.14 and 18.79 MeV (± 0.01 MeV) with B(M1, k)↑ = 0.20 ± 0.02, 0.32 ± 0.03 and 0.13 ± 0.03 μN2, respectively. An additional strength of 0.35 ± 0.09 μN2, distributed over eight weakly excited states with excitation energies Ex = 17.4 to 18.0 MeV, brings the total measured M1 strength to B(M1, k)↑ = 1.0 ± 0.1 μN2. The experimental M2 strength is distributed over states at Ex = 16.82, 17.78, 18.50 and 19.0 MeV (± 0.01 MeV) with B(M2, k)↑ = 19 ± 2, 13 ± 2, 59 ± 7 and 341 ± 51 μN2 · fm2, respectively. Electric transitions were also measured to states at Ex = 16.45 MeV (2+, E2), 17.30 MeV (1+, E1) and 18.20 MeV (2+, E2). Calculations were performed using the modified surface delta interaction in a 2p-2h shell model for the M1 transitions and the random phase approximation for the M2 transitions. The results show the sensitivity of the M1 strength as a measure of ground-state correlations and compare well with results from the 15N(p, γ) reaction.  相似文献   

2.
The peroxyoxalate-chemiluminescence arising from reaction of bis(2,4,6-trichlorophenyl)oxalate with hydrogen peroxide in the presence of a brightener Tinopal CBS (2,2′-((1,1′-biphenyl)-4,4′-diyldi-2.1-ethenediyl)bisbenzene sulfonic acid, disodium salt) has been studied. The relationship between the chemiluminescence intensity and concentrations of bis(2,4,6-trichlorophenyl)oxalate, sodium salicylate (as catalyst), hydrogen peroxide and Tinopal CBS is reported. The chemiluminescence parameters including intensity at maximum chemiluminescence, time at maximum intensity, total light yield, theoretical maximum level of intensity and pseudo-first-order rate constants for the rise and fall of the chemiluminescence burst (kr and kf) were evaluated from computer fitting of the resulting intensity-time plots. The activation parameters Ea, ΔH, ΔS and ΔG for the rise and fall steps were evaluated from the temperature dependence of kr and kf values. The results were discussed in terms of chemically initiated electron transfer between a reactive intermediate and Tinopal CBS as fluorescence activator. A possible mechanism involving dioxetanone derivatives as intermediates is proposed. Since there is a linear relationship between reciprocal of chemiluminescence intensity and reciprocal of fluorescer concentration, an analytical method based on partial least squares (PLS) regression was proposed for quantitative determination of Tinopal CBS. Satisfactory results were obtained with percent relative prediction error (RPE%) of 2.52 and detection limit of 2.7×10−5 M.  相似文献   

3.
4.
Abstract

Kinetic effects of pressure on thermal Z/E isomerizations of 4-(dimethylamino)-4′-nitroazo-benzene (DMNAB) and N-[4-(dimethylamino)benzylidene]-4-nitroaniline (DMBNA) were studied by flash photolysis in three viscous solvents; glycerol triacetate (GTA), 2-methyl-2,4-pentanediol (MPD) and “Traction Fluid B” (TFB). In all cases studied, the pressure effects observed at the beginning of pressurization were qualitatively similar to the ones observed in less viscous solvents. The results strongly suggest that the conventional understandings of the kinetic effects of pressure based on the transition state theory (TST) are valid in these thermal unimolecular reactions. At higher pressures, however, pressure-induced viscosity increase resulted in strong retardation of both of the isomerizations. The diffusion-controlled rate constants obtained by substituting the observed and the TST-expected rate constants to I/kobs = l/kTST + l/kdif showed inverse fractional dependence on the solvent viscosity.  相似文献   

5.
DAYA RAM  RANI DEVI  S K KHOSA 《Pramana》2013,80(6):953-970
The positive-parity bands in 224???234Th are studied using the projected shell model (PSM) approach. The energy levels, deformation systematics, B(E2) transition probabilities and nuclear g-factors are calculated and compared with the experimental data. The calculation reproduces the observed positive-parity yrast bands and B(E2) transition probabilities. Measurement of B(E2) transition probabilities for higher spins and g-factors would be a stringent test for our predictions. The results of theoretical calculations indicate that the deformation systematics in 224???234Th isotopes depend on the occupation of low k components of high j orbits in the valence space and the deformation producing tendency of the neutron–proton interaction operating between spin orbit partner (SOP) orbits, the [(2g9/2) π –(2g7/2) ν ] and [(1i13/2) π –(1i11/2) ν ] SOP orbits in the present context. In addition, the deformation systematics also depend on the polarization of (1h11/2) π orbit. The low-lying states of yrast spectra are found to arise from 0-quasiparticle (qp) intrinsic states whereas the high-spin states turn out to possess composite structure.  相似文献   

6.
In in-beam (p, p′) experiments, electron and γ-spectra were measured in the electron energy range of 500-1840 keV for102Pd and104Pd, and 600–1580 keV for106Pd. The conversion coefficients of all transitions in this range were obtained with accuracies of about 20%, in some favourable cases 10%. Special attention was given to 0+′-0+ transitions from the two-phonon triplets to the ground states with the following results for the branching ratios 0+′-0+ (ground state) to 0+′-2+ (one-phonon state):102Pd:T k (E0)/T γ (E2)<(2.1±3.6)·10?7 104Pd:T k (E0)/T γ (E2)=(6.0±1.4)·10?5 106Pd:T k (E0)/T γ (E2)=(6.0±2.0)·10?4  相似文献   

7.
8.
The validity of an inductive resonance theory of energy transfer from the T 1S 0 transition dipole to overtone vibrations of molecular groups containing H and D atoms is experimentally tested for a series of compounds whose conjugation systems are similar in size. To this end, by using kinetic, spectral, and luminescent methods (measurements of the phosphorescence decay times, phosphorescence spectra, ratios between the quantum yields of phosphorescence and fluorescence at 77 K, total quantum yields of fluorescence at 293 K, and ratios between the quantum yields of fluorescence at 293 and 77 K), the deactivation processes of the lowest excited T 1 and S 1 states of seven emitting centers (naphthalene, its hydroxy and dihydroxy derivatives, and their monoanions) in solutions in ethanol-h 6, ethanol-d 6, and their 2: 1 mixtures with diethyl ether are studied. For all the compounds studied, the rate constants k r of the radiative T 1S 0 transition and the changes in the overlap integrals of the spectra of phosphorescence and absorption of overtones of CH stretching vibrations are determined. The rate constants of energy transfer k dd(CH) from the T 1S 0 transition dipole to the stretching vibrations of the CH bonds are calculated without regard for the changes in the localization and orientation of this transition dipole in the compounds under study. The contribution of an individual CH group k nr(CH) to the total rate constant of nonradiative deactivation of the T 1 state averaged over the CH groups of the naphthalene ring system is ascertained. A good correlation between the changes in the constants k nr(CH) and k dd(CH) in the series of the hydroxy derivatives of naphthalene is found, which is indicative of the inductive resonance mechanism of the energy degradation of the T 1 state. The deviations from proportionality between the changes in these constants upon passing from naphthalene to its hydroxy derivatives, which correlate with a marked increase in the radiative constant k nr of the hydroxy derivatives in comparison with naphthalene, indicate changes in the strength and localization of the T 1S 0 transition dipole moment and in its orientation with respect to the plane of the molecule that occur due to introduction of a heteroatom, oxygen, whose lone pair of electrons enters into conjugation with the πelectrons of the naphthalene ring system.  相似文献   

9.
The rate constants (k r ) for singlet oxygen O2 (a 1Δ g ) luminescence in several selected solvents and in binary solvent mixture (acetone-toluene) were measured. All data have been normalized such that k r rel = 1.0 in toluene. It has been demonstrated that the changes in these rate constants were caused both by optical properties of a medium (the local field factor and density of photon states) and by an inherent property of the emitter of 1O2 (the square of transition moment). In its turn, the value of the transition moment is directly proportional to molecular polarizability of the medium molecules.  相似文献   

10.
The C7H7 potential energy surface was studied from first principles to determine the benzyl radical decomposition mechanism. The investigated high temperature reaction pathway involves 15 accessible energy wells connected by 25 transition states. The analysis of the potential energy surface, performed determining kinetic constants of each elementary reaction using conventional transition state theory, evidenced that the reaction mechanism has as rate determining step the isomerization of the 1,3-cyclopentadiene, 5-vinyl radical to the 2-cyclopentene,5-ethenylidene radical and that the fastest reaction channel is dissociation to fulvenallene and hydrogen. This is in agreement with the literature evidences reporting that benzyl decomposes to hydrogen and a C7H6 species. The benzyl high-pressure decomposition rate constant estimated assuming equilibrium between the rate determining step transition state and benzyl is k1(T) = 1.44 × 1013T0.453exp(−38400/T) s−1, in good agreement with the literature data. As fulvenallene reactivity is mostly unknown, we investigated its reaction with hydrogen, which has been proposed in the literature as a possible decomposition route. The reaction proceeds fast both backward to form again benzyl and, if hydrogen adds to allene, forward toward the decomposition into the cyclopentadienyl radical and acetylene with high-pressure kinetic constants k2(T) = 8.82 × 108T1.20exp(1016/T) and k3(T) = 1.06 × 108T1.35exp(1716/T) cm3/mol/s, respectively. The computed rate constants were then inserted in a detailed kinetic mechanism and used to simulate shock tube literature experiments.  相似文献   

11.
12.
The wave functions of the ground (Ψ0) and the first excited (Ψk) states of He II in the second-order approximation, i.e., up to the first two corrections to the corresponding solutions for a weakly nonideal Bose gas, are determined by the collective variable method, which was proposed by Bogolyubov and Zubarev and developed in the studies by Yukhnovskii and Vakarchuk. The functions Ψ0 and Ψk = ψkΨ0 are determined as the eigenfunctions of the N-particle Schrödinger equation from a system of coupled equations for Ψ0, Ψk, and the quasiparticle spectrum E(k) of helium II. The results consist in the following: (1) these equations are solved numerically for a higher order approximation compared with those investigated earlier (the first-order approximation), and (2) Ψ0 and ψk are derived from a model potential of interaction between He4 atoms (rather than from the structure factor as earlier) in which the potential barrier is joined with the attractive potential found from experiment. The height V 0 of the potential barrier is a free parameter. Except for V 0, the model does not have any free parameters or functions. The calculated values of the structure factor, the ground-state energy E 0, and the quasiparticle spectrum E(k) of He II are in agreement with the experimental values for V 0 ≈ 100 K. The second-order correction to the logarithm of Ψ0 significantly affects the value of E 0 and provides the asymptotics E(k → 0) = ck, while the second-order correction to ψk slightly affects the E(k). The second-order corrections to Ψ0 and ψk have a smaller effect on the results compared with the first-order corrections, whereby the theory is in agreement with experiment; therefore, one may assume that the truncated Ψ0 and ψk well describe the microstructure of He II. Thus, the series for Ψ0 and Ψk can be truncated in spite of the fact that the expansion parameter is not very small (~1/2).  相似文献   

13.
The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm?1 < E T < 24500 cm?1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s?1 Torr?1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.  相似文献   

14.
The semiclassical theory of proximity effects predicts a gap E g~?D/L 2 in the excitation spectrum of a long diffusive superconductor/normal-metal/superconductor (SNS) junction. Mesoscopic fluctuations lead to anomalously localized states in the normal part of the junction.As a result, a nonzero, yet exponentially small, density of states (DOS) appears at energies below E g. In the framework of the supermatrix nonlinear σ model, these prelocalized states are due to the instanton configurations with broken supersymmetry. The exact result for the DOS near the semiclassical threshold is found, provided the dimensionless conductance of the normal part G N is large. The case of poorly transparent interfaces between the normal and superconductive regions is also considered. In this limit, the total number of subgap states may be large.  相似文献   

15.
16.
We studied the electronic structure evolution of heavily B-doped diamond films across the metal-insulator transition (MIT) using ultraviolet photoemission spectroscopy (UPS). From high-temperature UPS, through which electronic states near the Fermi level (EF) up to ∼5kBT can be observed (kB is the Boltzmann constant and T the temperature), we observed the carrier concentration dependence of spectral shapes near EF. Using another carrier concentration dependent UPS, we found that the change in energy position of sp-band of the diamond valence band, which corresponds to the shift of EF, can be explained by the degenerate semiconductor model, indicating that the diamond valence band is responsible for the metallic states for samples with concentrations above MIT. We discuss a possible electronic structure evolution across MIT.  相似文献   

17.
18.
Oxygen quenching of excited triplet and singlet states of gas-phase anthracene and its derivatives that have similar energies of the lower triplet levels but widely different oxidation potentials (0.44 < Eox < 1.89 V) was studied. Quenching rate constants for singlet (kSO2) and triplet (kTO2) states in addition to the fraction of oxygen-quenched singlet and triplet states qS 1(T1O2 were determined from the decay rates, fluorescence intensities, and delayed fluorescence as functions of oxygen pressure. It was found that kSO2 values vary from 2·104 (9,10-dicyanoanthracene) to 1.2·107 sec−1·torr−1 (anthracene, 9-methylanthracene, 2-aminoanthracene) and kSO2 values from 5·102 to 1·105 sec−1·torr−1. The kSO2 values for anthracene, 9-methylanthracene, and 2-aminoanthracene, which have fast rates of interconversion from S1 to T1, are close to the rate constants for gas-kinetic collisions and are independent of the oxidation potentials (Eox). The quenching rate constants kSO2 for the other anthracene derivatives and kTO2 for all studied compounds decrease with increasing free energy of electron transfer ΔGET, which indicates the important role of charge-transfer interactions in the oxygen quenching of singlet S1- and triplet T1 states. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 36–42, January–February, 2008.  相似文献   

19.
The fluorescence quenching by oxygen of vapors of nine polycyclic aromatic hydrocarbons with strongly different oxidation potentials 0.44 eV < E ox < 1.61 eV (anthracene, 9-methylanthracene, 2-aminoanthracene, 9,10-dibromanthracene, pyrene, chrysene, phenanthrene, fluoranthene, and carbazole) is studied. From the dependences of the fluorescence decay rates and intensities on the oxygen pressure P O2, the quenching rate constants k S O2 for the excited singlet states S 1 and the fraction f S O2 of the S 1 states quenched by oxygen are estimated. At P O2 = 5 Torr, the k S O2 constants vary from 1.2 × 107 to 3.0 × 105 s?1 Torr?1, while the fraction of the quenched excited singlet states changes from 0.1 (fluoranthene) to 0.7 (chrysene) and 0.8 (pyrene). The dependences of k S O2 on the photophysical and electron-donor characteristics of the fluorescing compounds are analyzed. It is shown that, in the gas phase of anthracene and its derivatives, the magnitudes of k S O2 are limited by the rate constants of gas-kinetic collisions k gk and do not depend on the electron-donor characteristics of fluorophores, while the fraction of quenched states f S O2 changes with the oxidation potential. For compounds with k S O2 < k gk, both the rate constants k S O2 and the fraction of quenched states f S O2 depend on the E ox of sensitizers, which demonstrates an important role played by the charge-transfer interactions in quenching of the S 1 states. The dependence of the rate constants k S O2 on the free energy of electron transfer ΔG et is considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号